

BEDDIS WATER SERVICE COMMISSION ANNUAL GENERAL MEETING

Notice of Meeting on Tuesday, June 7, 2022 at 10:00 AM Salt Spring Island Library Program Room, 129 McPhillips Ave, Salt Spring Island, BC V8K 2T5

Gary Holman

Michael McCormick

Zoom:

https://us06web.zoom.us/j/87257854524?pwd=K3dGbFpEUVdnNnJwb3JOSFpSbkUwUT09

Purpose of the Annual General Meeting

The agenda for the Annual General Meeting (AGM) is approved by the members of the Commission. The purposes (and hence the agenda items) of the meeting are:

- To have the last year's AGM minutes approved (by Commission members), and to present reports on the work of the Commission on the past year's operation, maintenance, capital upgrades and financial information of the service to the service residents and owners,
- To nominate members for appointment to the Commission, and
- To enable the public to share comments on subjects which relate to the work of the Commission. The Commission can identify (under "new business") issues on which it wants feedback at the meeting. Motions raised by the public at the AGM will be considered by the commission at a subsequent regular meeting.

The Annual General Meeting is for the 2021 fiscal year.

AGENDA

- 1. Territorial Acknowledgment / Call Meeting to Order
- 2. Approval of Agenda
- 3. Adoption of Minutes of the 2020 Annual General Meeting held on November 8, 2021
- 4. Director and Chair's Report
- 5. Report
 - 5.1 Annual Report for 2021 Fiscal Year
- 6. Election of Chair and Commissioners
- 7. New Business None
- 8. Next Meeting TBD
- 9. Adjournment

Minutes of the 2020 FY Annual General Meeting - Beddis Water Service Commission Held November 8, 2021 at the Salt Spring Island Library, 121 McPhillips Avenue, Salt Spring Island, BC

DRAFT

Present: **Director:** Gary Holman

Commission Members: Laurie Jacques, Geoff Bartol (via Zoom), and

Michael McCormick

Staff: Karla Campbell, Senior Manager SSI Electoral Area (Via Zoom), Lia Xu, Manager, Finance Services (Via Zoom), Dan Robson, Manager, Saanich Peninsula and Gulf Islands Operations (Via Zoom) Dean Olafson, Manager

Engineering and Shayla Burnham, Recording Secretary

1. Territorial Acknowledgement / Call Meeting to Order

Chair Jacques provided the Territorial Acknowledgement and called the meeting to order at 10:03 am.

2. Limited Space Meeting Resolution

MOVED by Director Holman, **SECONDED** by Commissioner McCormick, that this resolution applies to the Beddis Water Service Commission for the meeting being held on November 8, 2021, and that the attendance of the public at the place of the meeting will be limited in accordance with the applicable requirements or recommendations under the Public Health Act, despite the best efforts of the Beddis Water Commission, because:

- a. The available meeting facilities cannot accommodate more than (20) people in person, including members of Beddis Water Commission and staff, and
- b. There are no other facilities presently available that will allow physical attendance of the Beddis Water Commission and the public in sufficient numbers; and

That the Beddis Water Commission is ensuring openness, transparency, accessibility and accountability in respect of the open meeting by the following means:

- a. By making the meeting agenda, as well as the other relevant documents, available on the CRD website, and directing interested persons to the website by means of the notices provided in respect of the meeting,
- b. By making the minutes of the meeting available on the CRD website following the meeting.

CARRIED

3. Approval of Agenda

MOVED by Commissioner Jacques, **SECONDED** by Commission Bartol, that the Beddis Water Service Commission agenda of the Annual General Meeting held on November 8, 2021 be approved as presented.

CARRIED

Director Holman joined the meeting at 10:08 p.m.

4. Adoption of Minutes of the 2019 Annual General Meeting held on December 3, 2020

MOVED by Commissioner Jacques, **SECONDED** by Commission Bartol, that the Beddis Water Service Commission meeting minutes of the Fiscal Year 2019 Annual General Meeting held on December 3, 2020 be approved.

CARRIED

5. Chair's Report – No report

6. Report

6.1 Annual Report for 2020 Fiscal Year

- The Commission expressed concern regarding free range pigs on a property located in the watershed and asked staff if the Service Area may implement control over potential pollution concerns.
- Staff noted the Commission would have to refer the concerns to the CRD to be put through a referral process for further investigation.
- The Commission asked staff what the Dissolved Air Flotation (DAF) plant capacity was and staff confirmed they would return to the Commission with an update.
- The Commission asked if there was a manganese removal option incorporated in the system and staff confirmed it was operational however, was not being operated at the moment.
- Staff confirmed that since the inception of the facility there has been no need to use the manganese removal system.
- Commission noted that the manganese limits were over twice last year.
- Staff confirmed the CRD water quality department did not require use of the manganese removal to date.
- The Commission asked about concepts for redirecting DAF residuals and staff confirmed the Environmental Protection Group are looking into approval to dispose of DAF residuals under the Waste Management Act. Staff confirmed a plan would need to be developed through hiring a consultant and staff noted it could potentially be completed for all facilities.
- The Commission asked if a cost share for dewatering could be an option across all water districts for a potential cost savings and staff confirmed they could return to the Commission with an update.
- Staff noted if the Commission wanted to move forward with the dewatering project staff could incorporate this into the 2023 work plan.
- Staff to discuss the threshold for the land application of the residuals with the Environmental Protection Group and return to the Commission with a report. If the threshold is exceeded, the Commission is to decide if they want to fund a study.

MOVED by Commissioner Jacques, **SECONDED** by Commission Bartol, that the Beddis Water Service Commission accept the Annual Report for the 2020 Fiscal Year for information.

CARRIED

7. Election of Officers

- Request for volunteers was advertised as per the requirements and after receiving no nominations, Michael McCormick agreed to stand for re-election. Hearing of no other nominations Michael McCormick was accepted by acclamation.
- Commissioner Geoff Bartol provided his resignation.
- The Commission requested staff to re-run advertisements for Commissioners in 2022.

8. New Business

• Staff to follow up with Commissioner McCormick regarding questions he forwarded via email and if necessary, will arrange a Special Meeting to discuss in 2022.

9. Next Meeting - TBD

10. Adjournment

MOVED by Commissioner Jacques, **SECONDED** by Commissioner Bartol that the meeting be adjourned at 10:46 am.

CARRIED

CHAIR
SENIOR MANAGER

Beddis Water Service

2021 Annual Report

INTRODUCTION

This report provides a summary of the Beddis Water Service for 2021. It includes a description of the service, summary of the water supply, demand and production, drinking water quality, operations highlights, capital project updates and financial report.

SERVICE DESCRIPTION

The Beddis Water Utility is a rural residential community located on Salt Spring Island. The service was created in 1969 as the Beddis Waterworks District and became a CRD service in 2004. The Beddis Water Utility (Figure 1) is comprised of 137 parcels of land of which 128 are presently connected to the system.

The utility obtains its drinking water from Cusheon Lake, a relatively small lake that lies within an uncontrolled multi-use watershed. The Capital Regional District (CRD) holds two licenses to divert a total of up to 102,850 m³ per year. Cusheon Lake is subject to seasonal water quality changes and is affected by periodic algae blooms.

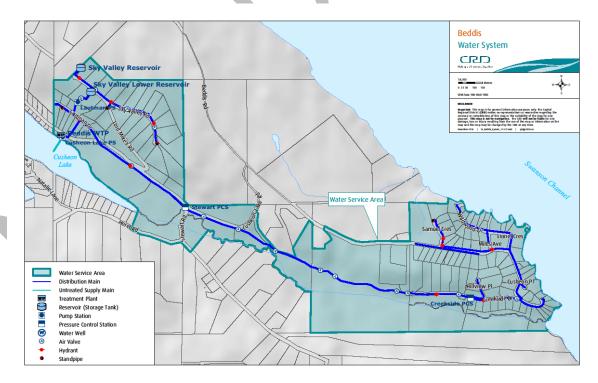


Figure 1: Beddis Water Service

The Beddis water system is primarily comprised of:

- water treatment plant (WTP) that draws water from Cusheon Lake and treats it at a location on Cusheon Road approximately 250m west of Lautman Drive. The water is treated using a rapid mix system, flocculation, dissolved air floatation (DAF) and filters, then chlorination prior to being pumped, via the distribution system to reservoirs. The water treatment plant (WTP) design flow is rate is 16.35 m³/hour (60 lgpm);
- approximately 7,200 m of water distribution pipe;
- 1 pump station/re-chlorination station;
- 2 water reservoirs one 45 m³ (10,000 lgal) and one 76 m³ (16,700 lgal);
- fire hydrants, standpipes, and gate valves;
- water service connections complete with water meters;
- 2 pressure regulating stations (PCS) Stewart Road and Creekside Drive.

WATER PRODUCTION AND DEMAND

Referring to Figure 2, 31,106 cubic meters (m³) of water was extracted (water production) from Cusheon Lake in 2021; a 28% increase from the previous year and is 22% increase from the five year rolling average. Water demand (customer water billing) for the service totaled 20,889 m³ of water; an 11% increase from the previous year and a 10% increase from the five year rolling average.

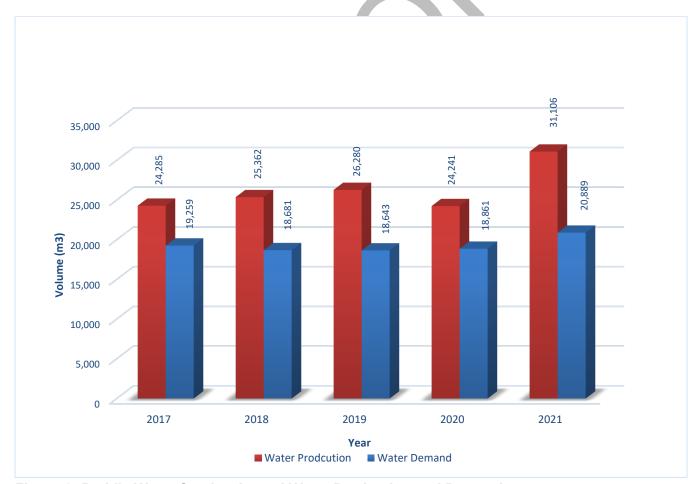


Figure 2: Beddis Water Service Annual Water Production and Demand

Water production by month for the past five years is shown in Figure 3. The monthly water production trends are typical for small water systems such as the Beddis water service. Water production for the

month of April and November are higher than historical due a water system leaks.

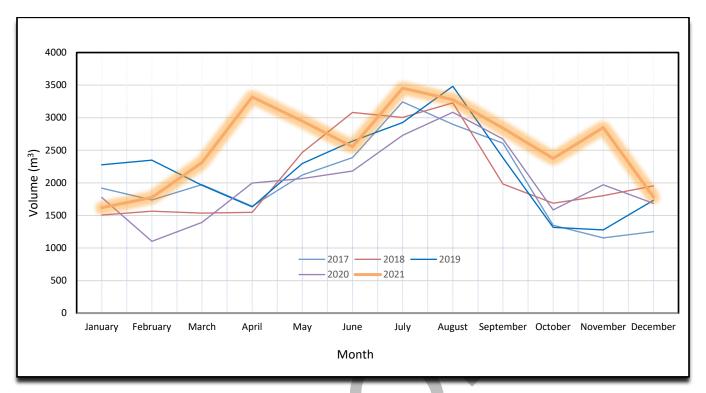


Figure 3: Beddis Water Service Monthly Water Production

The Beddis Water System is fully metered, and water meters are read quarterly. Water meter information enables water production and consumption to be compared in order to estimate leakage losses in the distribution system. The difference between water produced and water demand (total metered consumption) is called non-revenue water and includes distribution leaks, meter error, and unmetered uses such as fire hydrant usage, distribution system maintenance, and process water for the treatment plant. Non-revenue water is approximately 33%. Water loss is estimated to be approximately 28% which is higher than the previous year.

WATER QUALITY

In 2021, the analytical results of water samples collected from the Beddis Water System indicated that the drinking water was of good quality. The source water from Cusheon Lake was of good quality throughout the year with low concentrations of algae, most metals and generally low turbidity. Indicator bacteria concentrations (total coliforms) in the raw water were very low between October and April and higher during the warm weather season. No E.coli bacteria were detected in the raw water. Manganese concentrations were elevated in Cusheon Lake throughout the year and due to a lack of manganese specific treatment, the aesthetic objective in the Guidelines for Canadian Drinking Water Quality (GCDWQ) was exceeded on several occasions in the treated water (May and November). Manganese concentrations in exceedance of the aesthetic objective can lead to water discolouration and become a nuisance for customers. The maximum acceptable concentration (MAC) in the GCDWQ for manganese was never reached. Besides this, the DAF treatment system functioned very well under these source water conditions. The annual average of the disinfection by-product concentrations was below the limit in the GCDWQ in both sampled locations. While there had been individual results in the past that exceeded the MAC for the disinfection by-product trihalomethanes (THM) indicating the potential for exceedances, in 2021 all individual results were below the MAC. Other than water temperature during the summer months, there have been no exceedances of any monitored water quality parameter in the system. There have been no public water quality advisories in 2021.

The data below provides a summary of the water quality characteristics in 2021:

Raw Water:

- The raw water exhibited typically low concentrations of total coliform and *E. coli* bacteria throughout the year with significantly higher concentrations of total coliform during the summer months. No *E.coli* bacteria were detected in the raw water samples in 2021.
- One sample exhibited a low concentration of parasitic cysts (Giardia). No Cryptosporidium oocysts were detected.
- The raw water samples indicated fluctuating and elevated concentrations of iron and manganese. Manganese concentrations were elevated and typically above the aesthetic objective year round. Iron concentrations exceeded the aesthetic objective on November 24 after the extreme rainfall and runoff event on November 14/15. Episodes of elevated iron and manganese concentrations can lead to discolouration of the drinking water. Manganese has also a health related MAC which was never reached.
- The raw water was soft (median hardness 34.0 mg/L CaCO₃).
- The raw water turbidity (cloudiness) was often below 1 NTU with some higher peaks in the fall and winter. Highest recorded raw water turbidity was 11 NTU on November 24 in the wake of the extreme rainfall and runoff event on November 14/15.
- The median annual total organic carbon, an indicator of organic compounds and material in the lake water, was a moderate 4.25 mg/L.

Treated Water:

- The treated water was bacteriologically safe to drink. No sample tested positive for total coliform or *E.coli* bacteria.
- The treated water turbidity was consistently well below the turbidity limit of 1.0 NTU with a range from non-detected to 0.25 NTU.
- The annual average levels of the disinfection by-products trihalomethanes (TTHM = 67 μg/L) and haloacetic acids (HAA = 46 μg/L) across the distribution system were well below the limits in the GCDWQ (100 μg/L and 80 μg/L respectively).
- The treated water total organic carbon (TOC) was slightly higher than in 2020 but in line with historical trends, with a median value of 2.05 mg/L. There is currently no guideline in the GCDWQ for TOC levels, however the USEPA suggests a treated water TOC concentration of < 2 mg/L as confirmation of effective treatment and disinfection by-product control.
- All treated water sampled were low in iron concentrations. Manganese concentrations exceeded
 the aesthetic limits as per GCDWQ in May and November in a few locations. Cusheon Lake is
 known for the potential of seasonally high iron and manganese concentrations. Such
 exceedances can lead to water discolouration.
- The aesthetic limit for water temperature (15°C) was exceeded for several weeks during the summer months. The extreme heatwave in early summer exacerbated this situation in 2021.

Table 1 and 2 below provide a summary of the 2021 raw and treated water test results.

Water Quality data collected from this drinking water system can be reviewed on the CRD website:

https://www.crd.bc.ca/about/data/drinking-water-quality-reports

OPERATIONAL HIGHLIGHTS

The following is a summary of the major operational issues that were addressed during the 2021 operating period:

- Water system leak repairs:
 - Lord Mike's Road (April)
 - 231 Creekside (November)
- Corrective maintenance completed water treatment plant facility skimmer gear box, air saturator pump and flash mixer equipment.
- Replacement of water treatment plant:
 - o faulty electronic (HOA) switches
 - o PH probe equipment.
 - UPS battery
 - o Pressure regulator

CAPITAL IMPROVEMENTS

The following is a summary of the major capital improvements including year ending spending for 2021:

<u>Sky Valley Reservoir Level Control Upgrade (CE.705.5101)</u>: Repair work to the level control system of the Upper Sky Valley Reservoir to monitor and control the system automatically. The lack of functional level control system creates risks to the environment as well as significant additional operating costs. The recommended solution to address the problem involved accessing the top of the reservoir and installing a level measuring transducer inside the reservoir which communicates wirelessly with the Lautman pump station and water treatment plant.

Project	Spending	
Budget		\$42,500
Project Management		(\$9,658)
Contract		(\$21,046)
Supplies/Materials		(\$9,335)
Project Closed Balance Retu	\$2,461	

<u>Water Intake Assessment/Design (CE.676.7500)</u>: The intake pumps have been drawing in air/gas, resulting in reduced flow, and even air-locking of the pump(s). Design engineering services were procured, to provide a detailed analysis, technical memo, and (if necessary) construction/procurement tender package, to facilitate construction/installation of a recommended solution.

Project	Spending
Budget	\$20,000
Project Management	(\$6,172)
Design (Engineering, Drafting, etc.)	(\$14,583)
Balance Remaining	(\$755)

<u>Safe Work Procedures (CE.699.4503)</u>: The work scope includes reviewing and developing safe work procedures for operational and maintenance tasks.

Project	Spending
Budget	\$12,000
Project Management	(\$444)
Contract	(\$2,478)
Supplies/Materials	(\$208)
Balance Remaining	\$8,870

Back-up Power Design (CE.735.4502): Complete electrical designs for new onsite back up power.

Project	Spending
Budget	\$10,000
Project Management	(\$49)
Balance Remaining	\$9,951

2021 FINANCIAL REPORT

Please refer to the attached 2021 Statement of Operations and Reserve Balances.

Revenue includes parcel taxes (Transfers from Government), fixed user fees (User Charges), water sales (Sale-Water), interest on savings (Interest earnings), a transfer from the Operating Reserve Fund, and miscellaneous revenue such as late payment charges (Other revenue).

Expenses includes all costs of providing the service. General Government Services includes budget preparation, financial management, utility billing and risk management services. CRD Labour and Operating Costs includes CRD staff time as well as the costs of equipment, tools and vehicles. Debt servicing costs are interest and principal payments on long term debt. Other Expenses includes all other costs to administer and operate the water system, including insurance, supplies, water testing and electricity.

The difference between Revenue and Expenses is reported as Net revenue (expenses). Any transfers to or from capital or reserve funds for the service (Transfers to Own Funds) are deducted from this amount and it is then added to any surplus or deficit carry forward from the prior year, yielding an Accumulated Surplus (or deficit) that is carried forward to the following year.

WATER SYSTEM PROBLEMS - WHO TO CALL:

To report any event or to leave a message regarding the Beddis Water System, call either:

CRD water system emergency call centre: 1-855-822-4426 (toll free)

1-250-474-9630 (toll)

CRD water system general enquiries (toll free): 1-800-663-4425

When phoning with respect to an emergency, please specify to the operator, the service area in which the emergency has occurred.

Submitted by:	Matthew McCrank, MSc., P.Eng, Senior Manager, Wastewater
	Infrastructure Operations
	Glenn Harris, Ph.D., R.P.Bio., Senior Manager, Environmental Protection
	Rianna Lachance, BCom, CPA, CA, Senior Manager Financial Services
	Karla Campbell, BPA, Senior Manager, Salt Spring Island Electoral Area
Concurrence:	Robert Lapham, MCIP, RPP, Chief Administrative Officer

Attachment: 2021 Statement of Operations and Reserve Balances

For questions related to this Annual Report please email: saltspring@crd.bc.ca

ble 1: 2021 Summary of Ra PARAMETER			21 ANALYTI		TS	CANADIAN GUIDELINES	1	2011 - 202	0 RESULTS
Parameter	Units of	Annual	Samples		nge			Samples	Range
Name	Measure	Median	Analyzed	Minimum	Maximum	≤ = Less than or equal to	Median	Analyzed	Minimum-Maximu
means Not Detected by analytical		Wodian	7 thaiy 20a	WIIIIIII	WAXIIIAIII		Wodian	7 trialy 2 ou	Will III TIGHT I WAXII TIG
The rect between by unary tour	motriou uocu	Dhy	sical Pa	ramotors	/Biologi	cal			
	1 "					cai	0.44	00	ND 54.0
Chlorophyll a	ug/L	0.98	10	ND	4.42	445.40	2.14	68	ND - 51.6
Colour, True	TCU	12	16	6	35	≤ 15 AO	18	99	11 - 32
Conductivity @ 25C	uS/cm		Last analyz		07.0	N O III D I I	102.4	1	102.4-102.4
Hardness as CaCO₃	mg/L	34.0	4	30.1	37.0	No Guideline Required	35.8	34	17.9-42.0
pH	pH Units	7.2	4	6.5	7.6	7.0-10.5 AO	7.21	28	6.91 - 7.70
Carbon, Total Organic	mg/L	4.25	12	3.3	5.1		4.5	44	3.48 - 6.57
Turbidity	NTU Degrees C	0.85	17 17	0.44	11.0 26.4	≤ 15 AO	1.26	176	ND - 25.1
Water Temperature	Degrees C	17.9	17	5.5	20.4	2 10 AU	12.5	651	3.0 - 26.1
			Misashi	al Davan	4				
			MICLODI	al Paran	ieters				
Indicator Bacte	ria								
Coliform, Total	CFU/100 mL	57	15	5	950		38.5	172	ND - 7200
E. coli	CFU/100 mL	ND	16	ND	ND		ND	173	0 - 13
Hetero. Plate Count, 7 day	CFU/1 mL		Not teste	d in 2021			1200	66	170 - 1312
Parasites						No MAC Established			
Cryptosporidium, Total oocysts	oocysts/100 L	ND	2	ND	ND	Zero detection desirable	ND	19	ND - 4.40
Giardia, Total cysts	cysts/100 L	ND	2	ND	0.04	Zero detection desirable	ND	16	ND
Algal Toxins	S								
Microcystin (Abraxis)	ug/L		Not teste	d in 2021		1.5 MAC	ND	18	ND
Anatoxin A	ug/L		Last analyz	ed in 2014			ND	10	ND
Cylindrospermopsin	ug/L		Last analyz	ed in 2014			ND	10	ND
Microcystin-RR	ug/L		Last analyz	ed in 2014			ND	10	ND
Microcystin-YR	ug/L		Last analyz	ed in 2014			ND	10	ND - 9.18
Microcystin-LR	ug/L		Last analyz	ed in 2014			ND	10	ND
Total Microcystins	ug/L		Last analyz	ed in 2016		1.5 MAC	ND	13	ND - 9.18
Nodularin	ug/L		Last analyz	ed in 2014			ND	10	ND
				Metals					
			N.						
Aluminum	ug/L as Al	49.75	4	4.3	267	0000 144 0 / 400 00	21.9	34	ND - 184
	-					2900 MAC / 100 OG		_	
Antimony	ug/L as Sb	ND	4	ND	ND 0.04	6 MAC	ND	34	ND - 1.80
Arsenic	ug/L as As	0.27		0.	0.34	10 MAC	0.3	34	ND - 0.76
Barium	ug/L as Ba	6.3	4	4.3	9.2	100 MAC	6.5	34	4.1 - 13.0
Beryllium	ug/L as Be	ND ND	4	ND	ND		ND	34 27	ND ND
Bismuth	ug/L as Bi	ND ND	4	ND ND	ND ND	5000 MAC	ND ND	34	ND - 586
Boron	ug/L as B				0.017	5000 MAC 5 MAC	ND ND	34	
Cadmium Calcium	ug/L as Cd mg/L as Ca	ND 9.28	4	ND 8.07	10.1	No Guideline Required	9.92	34	ND 5.34 - 11.6
		ND	4					34	5.34 - 11.0 ND
Chromium Cobalt	ug/L as Cr ug/L as Co	ND	4	ND ND	ND 0.33	50 MAC	ND ND	34	ND ND
Copper	ug/L as Co ug/L as Cu	9.69	4	4.72	19.2	2000 MAC / ≤ 1000 AO	ND ND	34	4.21-32.5
Iron	ug/L as Cu ug/L as Fe	124.0	4	51.6	389	≥000 MAC/≤ 1000 AO ≤ 300 AO	133.0	34	4.21-32.5 ND - 310
Lead	ug/L as Pb	0.79	4	0.30	2.61	5 MAC	ND	34	0.28 - 3.17
Lithium	ug/L as Li	ND	4	ND	ND	O INFO	ND	16	0.20 - 3.17 ND
Magnesium	mg/L as Mg	2.63	4	2.41	2.83	No Guideline Required	2.67	34	1.10 - 3.14
Manganese	ug/L as Mn	36.75	4	23.5	37.5	120 MAC / ≤ 20 AO	38.3	34	8.00 - 220
Molybdenum	ug/L as Mo	30.75 ND	4	ND	ND	120 MAO / = 20 AO	ND	34	ND - 27.0
Nickel	ug/L as Ni	ND	4	ND	ND		ND	34	ND ND
Potassium	mg/L as K	0.51	4	0.47	0.75		0.53	34	0.15 - 0.64
Selenium	ug/L as R	ND	4	ND	ND	50 MAC	ND	34	ND - 0.62
Silicon	mg/L as Si	3.94	4	3.3	4.52		3.86	34	0.43 - 5.88
Silver	ug/L as Ag	ND	4	ND	ND	No Guideline Required	ND	34	ND
Sodium	mg/L as Na	5.89	4	5.35	6.71	≤ 200 AO	6.13	33	1.71 - 11.1
Strontium	ug/L as Sr	67.5	4	65.3	72.6	7000 MAC	68.8	34	18.1-86.0
Sulfur	mg/L as Si	3.15	4	3.0	3.4	. 555 107 (5	ND	27	ND - 5.70
Tin	ug/L as Sn	ND	4	ND	ND		ND	34	ND ND
Titanium	ug/L as Ti	ND	4	ND	10.5		ND	34	ND
	ug/L as TI	ND	4	ND	ND		ND	27	ND
				110	. 40		- 110	'	
Thallium		ND	_	ND	ND	20 MAC	ND	27	ND
Thallium Uranium	ug/L as U	ND ND	4	ND ND	ND ND	20 MAC	ND ND	27 34	ND ND
Thallium		ND ND 12.0	_	ND ND 8.9	ND ND 35.6	20 MAC ≤ 5000 AO	ND ND 8.05	27 34 34	ND ND 3.0 - 200.0

able 2: 2021 Summary of T PARAMETER			-	ICAL RESUL		CANADIAN GUIDELINES		2011 - 2020	0 RESULTS
Parameter	Units of	Annual	Samples	Rar		≤ = Less than or equal to		Samples	Range
Name	Measure	Median	Analyzed	Min.	Max.	<u>S</u> = Less than or equal to	Median	Analyzed	MinMax.
means Not Detected by analytical	al method used		Dhara	is al Dan					
			Phys	ical Para	meters				
Carbon, Total Organic	mg/L as C	2.05	12	1.50	5.3		2.1	72	0.27-6
Colour, True	TCU	ND	16	ND	ND	≤ 15 AO	ND	95	ND - 4.0
Hardness as CaCO₃	mg/L	36.3	16	30.9	47.7	No Guideline Required	37.8	73	29.8 - 53.1
pН	pH units	6.6	5	6.5	7.2	7.0-10.5 AO	6.90	21	6.57 - 9.03
Turbidity	NTU	ND	17	ND	0.25	1 MAC and ≤ 5 AO	0.22	188	0.07 - 2.93
Water Temperature	Degress C	13.4	98	4.0	26.0	≤ 15 AO	12.0	3307	0 - 26.0
			Micro	bial Par	ameters	i			
Indicator Bacte	ria								
Coliform, Total	CFU/100 mL	ND	82	ND	ND	0 MAC	ND	743	ND - 4
E. coli	CFU/100 mL	ND	82	ND	ND	0 MAC	ND	742	ND ND
Hetero. Plate Count, 7 day	CFU/1 mL		Not teste			No Guideline Required	ND	126	ND - 280
· ,									
Algal Toxins	S								
Anatoxin A	ug/L		Last analys	zed in 2014			ND	2	ND
Cylindrospermopsin	ug/L ug/L			zed in 2014 zed in 2014			ND ND	2	ND ND
Microcystin-RR	ug/L ug/L			zed in 2014 zed in 2014			ND ND	2	ND ND
Microcystin-YR	ug/L			zed in 2014			ND	2	ND ND
Microcystin-LR	ug/L			zed in 2014			ND	1	ND
Total Microcystins	ug/L			zed in 2015		1.5 MAC	ND	5	ND
Nodularin	ug/L			zed in 2014			ND	2	ND
				Disinfect	ants				
Disinfectants	3								
Chlorine, Free Residual	mg/L as Cl2	1.01	99	0.31	2.07	No Guideline Required	0.88	3641	ND - 2.50
Chlorine, Total Residual	mg/L as Cl ₂	1.17	98	0.39	2.2	No Guideline Required	1.02	3430	0.1 - 4.52
			Dicinfo	ction By	Droduc	rte			
			DISITIE	Cuon by	Floude	,13			
Trihalomethanes	(THMe)								
Tillalomethanes	(Trivis)								
Bromodichloromethane	ug/L	9.9	24	6.7	14		11.9	71	ND - 20.0
Bromoform	ug/L	ND	24	ND	ND		ND	71	ND
Chloroform	ug/L	48.5	24	28.0	74.0		62.0	71	6.91 - 234
Chlorodibromomethane	ug/L	1.15	24	ND	2.4		1.06	71	ND - 6.88
Total Trihalomethanes	ug/L	58.5	24	35.0	91.0	100 MAC	73.1	71	6.91 - 251
Haloacetic Acids (HAAS) ug/L	46	4	40	51	80 MAC	29.4	17	13.0 - 232
ПААЗ	ug/L	40	4	40	31	80 IVAC	29.4	17	13.0 - 232
				Metals	;	-			
					-				
Aluminum	ug/L as Al	11.5	16	ND	26.1	2900 MAC / 100 OG	10.2	74	ND - 346
Antimony	ug/L as Sb	ND	16	ND	ND	6 MAC	ND	73	ND - 1.33
Arsenic	ug/L as As	0.17	16	ND	0.22	10 MAC	0.31	73	ND - 0.99
Barium	ug/L as Ba	5.5	16	4.0	7.1	100 MAC	5.8	73	4.1 - 18.0
Beryllium	ug/L as Be	ND	16	ND	ND		ND	73	ND
Bismuth	ug/L as Bi	ND	16	ND	ND		ND	68	ND
Boron	ug/L as B	ND	16	ND	ND	5000 MAC	ND	73	ND - 505
Cadmium	ug/L as Cd	ND	16	ND	ND	5 MAC	ND	73	ND
	mg/L as Ca	400	16				10.8	73	8.06 - 19.3
Calcium		10.3		8.43	16.9	No Guideline Required			ND
Calcium Chromium	ug/L as Cr	ND	16	ND	ND	No Guideline Required 50 MAC	ND	73	
Calcium Chromium Cobalt	ug/L as Cr ug/L as Co	ND ND	16 16	ND ND	ND ND	50 MAC	ND ND	73 73	ND
Calcium Chromium Cobalt Copper	ug/L as Cr ug/L as Co ug/L as Cu	ND ND 8.37	16 16 16	ND ND 0.74	ND ND 48.6	50 MAC	ND ND 9.91	73 73 73	ND 0.66 - 127
Calcium Chromium Cobalt Copper Iron	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe	ND ND 8.37 18.1	16 16 16 16	ND ND 0.74 ND	ND ND 48.6 86.6	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO	ND ND 9.91 19.5	73 73 73 73	ND 0.66 - 127 ND - 2650
Calcium Chromium Cobalt Copper Iron Lead	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb	ND ND 8.37 18.1 0.28	16 16 16 16 16	ND ND 0.74 ND ND	ND ND 48.6 86.6 1.14	50 MAC	ND ND 9.91 19.5 0.30	73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23
Calcium Chromium Cobalt Copper Iron Lead Lithium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li	ND ND 8.37 18.1 0.28 ND	16 16 16 16 16 16 8	ND ND 0.74 ND ND	ND ND 48.6 86.6 1.14 ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC	ND ND 9.91 19.5 0.30 ND	73 73 73 73 73 73 20	ND 0.66 - 127 ND - 2650 ND - 2.23 ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mg	ND ND 8.37 18.1 0.28 ND 2.44	16 16 16 16 16	ND ND 0.74 ND ND ND 0.98	ND ND 48.6 86.6 1.14 ND 2.86	50 MAC	ND ND 9.91 19.5 0.30	73 73 73 73 73 73 20 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07
Calcium Chromium Cobalt Copper Iron Lead Lithium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li	ND ND 8.37 18.1 0.28 ND	16 16 16 16 16 8 16	ND ND 0.74 ND ND	ND ND 48.6 86.6 1.14 ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC	ND ND 9.91 19.5 0.30 ND 2.52	73 73 73 73 73 73 20	ND 0.66 - 127 ND - 2650 ND - 2.23 ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mg ug/L as Mn	ND ND 8.37 18.1 0.28 ND 2.44 3.85	16 16 16 16 16 8 16 16	ND ND 0.74 ND ND ND ND 0.98 ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2	50 MAC	ND ND 9.91 19.5 0.30 ND 2.52 9.0	73 73 73 73 73 73 20 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mg ug/L as Mh	ND ND 8.37 18.1 0.28 ND 2.44 3.85	16 16 16 16 16 16 8 16 16	ND ND 0.74 ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND	50 MAC	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND	73 73 73 73 73 73 20 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mg ug/L as Mh ug/L as Mo ug/L as Ni ug/L as Ki	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53	16 16 16 16 16 8 16 16 16 16 16	ND ND 0.74 ND ND 0.98 ND ND ND ND ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74	50 MAC	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND ND ND	73 73 73 73 73 73 20 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND - 0.67
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mg ug/L as Mh ug/L as Mo ug/L as Ni	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND	16 16 16 16 16 8 16 16 16 16 16 16	ND ND 0.74 ND ND ND 0.98 ND ND ND ND ND ND ND ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND ND 0.55 ND	73 73 73 73 73 20 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND - 0.67 ND 0.52 - 6.07
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mg ug/L as Mh ug/L as Mo ug/L as Ni ug/L as Ki	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53	16 16 16 16 16 16 16 16 16 16 16 16 16	ND ND 0.74 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND 0.55 ND 3.68 ND	73 73 73 73 73 73 20 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND - 0.67
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Fb ug/L as Li mg/L as Mg ug/L as Mo ug/L as Ni mg/L as K ug/L as Se mg/L as Se mg/L as Ag mg/L as Na	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND 0.53 ND 3.94 ND 8.61	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND 0.98 ND ND ND ND ND ND 0.46 ND 3.06 ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND 4.40 ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND 0.55 ND 3.68 ND 8.73	73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium	ug/L as Cr ug/L as Co ug/L as Co ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mg ug/L as Mn ug/L as Ni mg/L as K ug/L as Se mg/L as Si ug/L as Ag mg/L as Na	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND 3.94 ND 8.61 71.6	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND 0.98 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND 4.40 ND 9.02 64.9	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND 0.55 ND 3.68 ND 8.73 73.8	73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND ND ND - 0.67 ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mg ug/L as Mh ug/L as Mo ug/L as Ni mg/L as Si ug/L as Se mg/L as Si ug/L as Na ug/L as Si ug/L as Si	ND ND ND 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND 3.94 ND 3.94 ND	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND ND 0.98 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND NB 86.6 1.14 ND 2.86 49.2 ND ND ND 0.74 ND 4.40 ND 9.02 64.9 3.5	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND 0.55 ND 3.68 ND 8.73 73.8 ND	73 73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3 ND - 4.20
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mg ug/L as Mn ug/L as Ni mg/L as Ni mg/L as Si ug/L as Se ug/L as Sa ug/L as Sa ug/L as Sr ug/L as Sr ug/L as Sr ug/L as Sr	ND ND ND ND ND ND 18.1 0.28 ND 2.44 3.85 ND ND ND ND 0.53 ND ND ND ND 3.94 ND 8.61 71.6 3.05 ND	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND 4.40 ND 9.02 64.9 3.5 ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND 0.55 ND 3.68 ND 8.73 73.8 ND ND	73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND ND ND - 0.67 ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3 ND - 4.20 ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin	ug/L as Cr ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Ii mg/L as Mn ug/L as Mn ug/L as Ni mg/L as K ug/L as Se mg/L as Se ug/L as Sr ug/L as Sr ug/L as Si ug/L as Si ug/L as Si ug/L as Si	ND ND 18.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND ND 0.53 ND 10 10 10 10 10 10 10 10 10 10 10 10 10	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND ND ND ND ND ND 0.46 ND 3.06 ND 7.3 64.9 ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND 4.40 ND 9.02 64.9 3.5 ND ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND 0.55 ND 8.73 73.8 ND	73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND - 0.67 ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3 ND - 4.20 ND ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium Thallium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Cu ug/L as Pb ug/L as Li mg/L as Mn ug/L as Mn ug/L as Ni mg/L as K ug/L as Se mg/L as Se mg/L as Sa ug/L as Sr ug/L as Sr ug/L as Sr ug/L as Sr ug/L as Si ug/L as Si ug/L as Si	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND 3.94 ND 8.61 71.6 3.05 ND ND ND	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND 0.98 ND ND 0.46 ND 3.06 ND 7.3 64.9 ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND 4.40 ND 9.02 64.9 3.5 ND ND ND ND ND ND ND ND ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND 0.55 ND 8.73 73.8 ND	73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND ND ND - 0.67 ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3 ND - 4.20 ND ND ND ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium Thallium Uranium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mg ug/L as Mh ug/L as Mo ug/L as Ni mg/L as Si ug/L as Se mg/L as Si ug/L as Sr mg/L as Si ug/L as Si	ND N	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND ND 0.98 ND ND ND ND 3.06 ND 7.3 64.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND ND 3.68 ND 8.73 73.8 ND	73 73 73 73 73 73 73 73 73 73 73 73 73 7	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3 ND - 4.20 ND ND ND ND ND
Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Mangesium Mickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium Thallium	ug/L as Cr ug/L as Co ug/L as Cu ug/L as Cu ug/L as Pb ug/L as Li mg/L as Mn ug/L as Mn ug/L as Ni mg/L as K ug/L as Se mg/L as Se mg/L as Sa ug/L as Sr ug/L as Sr ug/L as Sr ug/L as Sr ug/L as Si ug/L as Si ug/L as Si	ND ND 8.37 18.1 0.28 ND 2.44 3.85 ND ND 0.53 ND 3.94 ND 8.61 71.6 3.05 ND ND ND	16 16 16 16 16 16 16 16 16 16 16 16 16 1	ND ND 0.74 ND ND 0.98 ND ND 0.46 ND 3.06 ND 7.3 64.9 ND ND	ND ND 48.6 86.6 1.14 ND 2.86 49.2 ND ND 0.74 ND 4.40 ND 9.02 64.9 3.5 ND ND	50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	ND ND 9.91 19.5 0.30 ND 2.52 9.0 ND ND 0.55 ND 8.73 73.8 ND	73 73 73 73 73 20 73 73 73 73 73 73 73 73 73 73 73 73 73	ND 0.66 - 127 ND - 2650 ND - 2.23 ND 0.92 - 3.07 ND - 61.3 ND ND ND ND ND ND - 0.67 ND 0.52 - 6.07 ND 6.89 - 13.5 58.3 - 92.3 ND - 4.20 ND ND ND ND

CAPITAL REGIONAL DISTRICT

BEDDIS WATER Statement of Operations (Unaudited) For the Year Ended December 31, 2021

	2021	2020
Revenue		
Transfers from government	73,470	72,240
User Charges	106,394	87,411
Sale - Water	80,395	77,017
Other revenue from own sources:		
Interest earnings	22	107
Transfer from Operating Reserve	10,000	-
Other revenue	296	5,685
Total Revenue	270,577	242,459
Expenses		
General government services	8,721	9,247
Contract for Services	81,840	72,356
CRD Labour and Operating costs	53,373	41,324
Debt Servicing Costs	43,040	65,208
Other expenses	55,917	50,178
Total Expenses	242,891	238,313
Net revenue (expenses) Transfers to own funds:	27,685	4,146
		10.5-5
Capital Reserve Fund	9,845	13,373
Operating Reserve Fund	4,190	4,423
Annual surplus/(deficit)	13,650	(13,650)
Accumulated surplus/(deficit), beginning of year	(13,650)	_
Accumulated surplus/(deficit), end of year	\$ -	(13,650)

CAPITAL REGIONAL DISTRICT

BEDDIS WATER Statement of Reserve Balances (Unaudited) For the Year Ended December 31, 2021

	Capital Re	Capital Reserve		
	2021	2020		
Beginning Balance	14,544	50,869		
Transfer from Operating Budget Transfers from Completed Capital Projects Transfer to Capital Project Interest Income	9,845 - (984) 376	13,373 2,461 (52,500) 342		
Ending Balance	23,782	14,544		

	Operating Reserve		
	2021	2020	
Beginning Balance	15,284	10,679	
Transfer from Operating Budget	4,190	4,423	
Transfer to Operating Budget Interest Income	(10,000) 278	- 181	
Ending Balance	9,752	15,284	