

Capital Regional District

625 Fisgard St., Victoria, BC V8W 1R7

Notice of Meeting and Meeting Agenda Fulford Water Service Commission

Monday, October 21, 2024

1:00 PM

SIMS Boardroom 124 Rainbow Road Salt Spring Island BC

Annual General Meeting

MS Teams Link: Click here

C. Eyles (Chair), G. Holman, A. Martin, D. Thompson, B. Walker

The Capital Regional District strives to be a place where inclusion is paramount and all people are treated with dignity. We pledge to make our meetings a place where all feel welcome and respected.

Purpose of the Annual General Meeting

The agenda for the Annual General Meeting (AGM) is approved by the members of the Commission. The purposes (and hence the agenda items) of the meeting are:

- To have the last year's AGM minutes approved (by Commission members), and to present reports on the work of the Commission on the past year's operation, maintenance, capital upgrades and financial information of the service to the service residents and owners.
- To nominate members for appointment to the Commission, and
- To enable the public to share comments on subjects which relate to the work of the Commission. The Commission can identify (under "new business") issues on which it wants feedback at the meeting. Motions raised by the public at the AGM will be considered by the commission at a subsequent regular meeting.

The Annual General Meeting is for the 2023 fiscal year

- 1. Territorial Acknowledgment
- 2. Approval of Agenda
- 3. Adoption of Minutes

3.1. <u>24-1055</u> Minutes of June 12, 2023 and May 24, 2024 Fulford Water Service

Commission

Recommendation: That the minutes of the following meetings be adopted as presented:

-June 12, 2023 Annual General Meeting (AGM)

-June 12, 2023 Special Meeting -May 24, 2024 Special Meeting

Attachments: Minutes: June 12, 2023 AGM

Minutes: June 12, 2023 Special Meeting
Minutes: May 24, 2024 Special Meeting

4. Director and Chair's Report

5. Report

5.1. 24-705 Fulford Water Service Annual Report 2023

Recommendation: There is no recommendation. This report is for information only.

<u>Attachments:</u> Fulford Water Service Annual Report 2023

6. Election of Commissioner

7. New Business

None

8. Outstanding Business

None

10. Adjournment

Next Meeting:

-Monday, October 21, 2024, at 02:00pm in the Salt Spring Island Multi Space (SIMS) Boardroom, 124 Rainbow Road, Salt Spring Island, BC V8K 2V5

Minutes of the Annual General Meeting of the Fulford Water Service Commission Held June 12, 2023 for the 2022 Fiscal Year at the Salt Spring Island Multi Space (SIMS) Boardroom, 124 Rainbow Road, Salt Spring Island, BC

DRAFT

Present: Director: Gary Holman

Commission Members: Carole Eyles, Alan Martin and Bren Walker

Staff: Karla Campbell, Senior Manager, Salt Spring Island Electoral Area, Dean Olafson, Manager SSI Engineering, Dan Robson, Manager, Saanich Peninsula and Gulf Islands Operations (Via Zoom), Lia Xu, Manager, Finance

Services (Via Zoom), and Shayla Burnham, Recording Secretary

These minutes follow the order of the agenda although the sequence may have varied.

1. Territorial Acknowledgement / Call Meeting to Order

A Territorial Acknowledgement was provided by Commissioner Eyles and the meeting was called to order at 10:00am.

2. Approval of Agenda

MOVED By Commissioner Eyles, **SECONDED** by Commissioner Martin, that the Fulford Water Service Commission approve the Monday, June 12, 2023 Annual General Meeting for the 2022 fiscal year as presented.

CARRIED

4. Adoption of Minutes of the 2021 Annual General Meeting held on June 20, 2022

MOVED By Commissioner Eyles, **SECONDED** by Commissioner Walker, that the Fulford Water Service Commission adopt the minutes of the 2021 Annual General Meeting held on June 3, 2022 as presented.

CARRIED

MOVED By Commissioner Eyles, **SECONDED** by Commissioner Martin, that the Fulford Water Service Commission adopt the Special minutes of April 14, 2023 as presented.

CARRIED

5. Director and Chairs Report

There was no report.

6. Report

6.1 Annual Report for the 2022 Fiscal Year

- McElhanney report discussed
- Security fence completed
- New strategy for recording leaks

There is no recommendation. This report is for information only.

7. New Business

Don Thompson submitted a nomination to be appointed to the commission.

The chair called for nominations a second time.

Hearing no further nominations the chair that requested the Capital Regional District Board appoint Don Thompson to the Commission for the August 1, 2023 to December 31, 2024 term.

8. Outstanding Business

- -Discussion regarding capacity to system for June-August.
- -Moss to be removed from treatment plant roof

Carole Eyles stated her intent to serve on the Commission for the January 1, 2024 to December 31, 2025 term.

9. Next Meeting – TBD

10. Adjournment

MOVED By Commissioner Eyles, that the Cedar Lane Water Service Commission adjourn the meeting at 10:52am.

CHAIR	
SENIOR MANAGER	

Minutes of the Fulford Water Service Commission Special Meeting Held June 12, 2023 at the Salt Spring Island Multi Space (SIMS) Boardroom, 124 Rainbow Road, Salt Spring Island, BC

DRAFT

Present: Director: Gary Holman

Commission Members: Carole Eyles, and Alan Martin

Staff: Karla Campbell, Senior Manager, Salt Spring Island Electoral Area, Dean Olafson, Manager SSI Engineering, Dan Robson, Manager, Saanich Peninsula and Gulf Islands Operations (Via Zoom), and Shayla Burnham,

Recording Secretary Regrets: Bren Walker

These minutes follow the order of the agenda although the sequence may have varied.

The meeting was called to order at 10:43am.

1. Approval of Agenda

MOVED By Commissioner Eyles, **SECONDED** by Commissioner Martin, that the Fulford Water Service Commission approve the Monday, June 12, 2023, Special Meeting agenda as presented.

CARRIED

2. Adoption of Minutes – None

3. Report

3.1 Request Additional Funds to Complete 2023 Capital Works Projects

That the Fulford Water Service Commission recommends to the Capital Regional District Board that the Fulford 2023-2027 Five-Year Capital Plan be amended to increase:

- 1. The project budget for the installation of a turbidity meter on the influent line at the water treatment plant (22-02) by an additional \$3,500, from \$4,500 to \$8,000, to be funded from the Capital Reserve Fund (CRF).
- 2. The project budget for the replacement of the impellers in the pumps at the Sunnyside pump station (23-01) by an additional \$4,400, from \$6,600 to \$11,000, to be funded from the Capital Reserve Fund (CRF).

CARRIED

- 4. **New Business** None
- 5. Outstanding Business None
- 6. Next Meeting TBD
- 7. Adjournment

MOVED By Commissioner Eyles, that the Fulford Water Service Commission adjourn the meeting at 10:46am.

CHAIR	
SENIOR MANAGER	

Minutes of the Special Meeting of the Fulford Water Services Commission Held Friday, May 24, 2024 at the Salt Spring Island Multi-Space (SIMS) 124 Rainbow Rd, Salt Spring Island, BC V8K 2K3

DRAFT

Present: Commissioners: C. Eyles, G. Holman, A. Martin, D. Thompson, B. Walker,

Staff:, K. Campbell, Senior Manager, Salt Spring Island Administration, D. Ovington, Parks and Recreation Manager, Senior Manager, Salt Spring Island Administration, M. Williamson, Committee Clerk, (Recorder)

These minutes follow the order of the agenda although the sequence may have varied.

The meeting was called to order at 10:00 am.

1. TERRITORIAL ACKNOWLEDGEMENT

The Senior Manager provided a Territorial Acknowledgement.

2. Election of Chair

The Senior Manager, Salt Spring Island Administration called for nominations for the position of Chair of the Ganges Sewer Local Services Commission for 2024.

Commissioner Martin nominated Commissioner Eyles, Commissioner Eyles accepted the nomination.

- K. Campbell called for nominations a second time.
- K. Campell called for nominations a third time.

Hearing no further nominations, the Senior Manager, Salt Spring Island Administration declared Commissioner Eyles Chair of the Fulford Water Services Commission by acclamation.

3. APPROVAL OF AGENDA

MOVED by Director Walker, **SECONDED** by Commissioner Martin, That agenda for the May 24, 2024, Special meeting of the Fulford Services Commission be approved as circulated. **CARRIED**

4. DELEGATIONS/PRESENTATIONS

4.1. Presentations

There were no presentations

4.2. Delegations

4.2.1. Delegation - David Fullbrook; Merchant House Capital Re: Item 5.1. 2621 and 2661 Fulford-Ganges Road - Application for Inclusion in the Fulford Water Local Service Area

Discussion regarding rules of quorum and public meetings.

D. Fullbrook spoke regarding item 5.1.

4.2.2. Delegation - Ian Peace; Resident Salt Spring Island Re: Item 5.1. 2621 and 2661 Fulford-Ganges Road - Application for Inclusion in the Fulford Water Local Service Area

I. Peace spoke regarding item 5.1.

5. Special Meeting Matters

5.1. 2621 and 2661 Fulford-Ganges Road - Application for Inclusion in the Fulford Water Local Service Area

- -Properties along the new proposed pipeline would need to apply to be apart of the service area to connect
- -Pipe sizes based on possible growth but not on required growth.
- -4.5 L/s capacity of treatment plant. 2.8 L/s is projected capacity for project and current properties

MOVED by Director Holman, **SECONDED** by Commissioner Walker, To defer further consideration of the proposal until responses to commission written questions are provided and discussed in person meeting with the proponent, consultants, and CRD staff engineer. **CARRIED**

MOVED by Director Holman, **SECONDED** by Commissioner Martin, Direct staff to request the proponent to develop estimates of full development build out including demographic changes in the service area and related water demand in consultation with islands trust.

CARRIED

D. Fullbrook stated their intent to withdraw application for inclusion.

6. ADJOURNMENT

MOVED by Commissioner Eyles, **SECONDED** by Commissioner Martin, That the Local Community Commission adjourn the meeting at 11:48 am. **CARRIED**

CHAIR	
SENIOD MANAGED	

Fulford Water Service

2023 Annual Report

INTRODUCTION

This report provides a summary of the Fulford Water Service for 2023. It includes a description of the service, summary of the water supply, demand, and production, drinking water quality, operations highlights, capital project updates and financial report.

SERVICE DESCRIPTION

The Fulford Water Utility is a semi-rural residential community located on Salt Spring Island. It services the Fulford Elementary School and a small commercial component, including the BC Ferries Terminal. The service was created in 1968 as the Fulford Water Improvement District and became a CRD service in 2004. The Fulford Water Utility (Figure 1) is comprised of 102 parcels of land with 95 single-family equivalents (SFE) as the use on some parcels represents more than one dwelling.

The utility obtains its drinking water from Lake Weston, a small lake that lies within an uncontrolled multiuse watershed outside and northeast of the service area. The Capital Regional District (CRD) holds two licenses to divert a total of up to 291.6 cubic metres per day and store up to 49,339 cubic metres. Lake Weston is estimated to have a total volume of 1,090,000 cubic metres. Lake Weston is subject to seasonal water quality changes and is affected by periodic algae blooms.

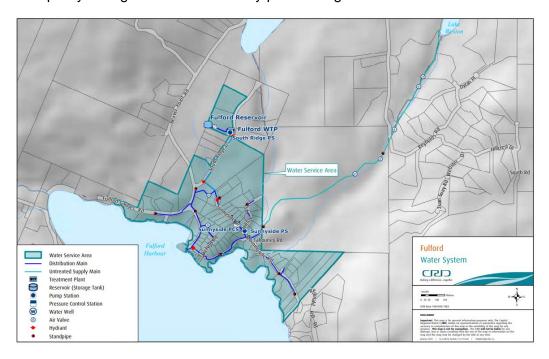


Figure 1: Fulford Water Service

The Fulford water system is primarily comprised of:

 a water treatment plant (WTP) that draws water from Lake Weston and treats it at a location on South Ridge Drive, adjacent to the Fulford Elementary School. The water is treated using a rapid mix system, flocculation, dissolved air floatation (DAF) and filters, ultraviolet disinfection, then chlorination prior to being pumped, via the distribution system to a reservoir. The water treatment plant (WTP) design flow rate is 4.5 litres/sec (60 lgpm);

- one raw water pump station on Sunnyside Drive near Hilltop Road (flow rate of two pumps running is 2.3 litres/sec (30 Igpm);
- approximately 4,500 m of water distribution pipe;
- 1 water reservoir 360 m³ (80,000 lg);
- fire hydrants, standpipes, and gate valves;
- water service connections complete with water meters to commercial properties only;
- 1 pressure regulating station (PCS) on Sunnyside Drive near Hilltop Road.

WATER PRODUCTION AND DEMAND

Annual water production since 2018 is shown in Figure 2. A total of 28,881m³ of water was extracted from Lake Weston in 2023. This is a 15% decrease from the previous year and a 5% decrease from the 5-year rolling average.

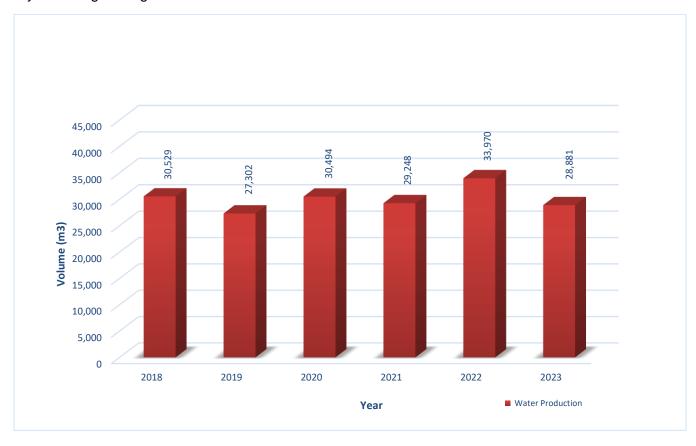


Figure 2: Fulford Water Service Annual Water Production

Water production by month for the past five years is shown in Figure 3. The monthly water production trends are typical for small water systems such as the Fulford water system. Water production from in the fall of 2020 and 2022 were higher due to water system leaks that were difficult to locate.

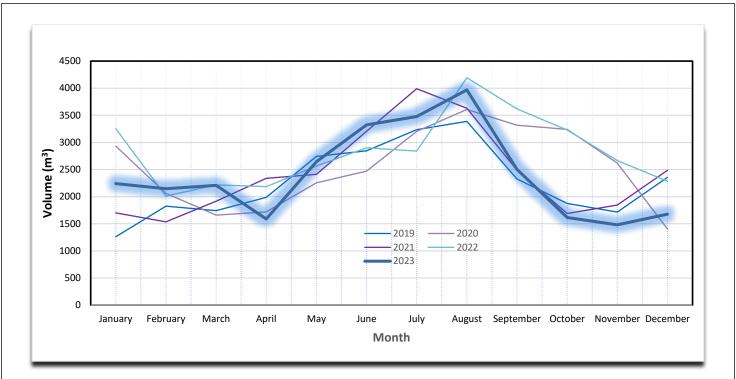


Figure 3: Fulford Water Service Monthly Water Production

The Fulford Water System does not have residential water meters and therefore the average per single-family equivalent (SFE) is simply a calculated value. Utilizing 95 SFE and deducting an allowance of 20% for non-revenue water such as water system leaks, fire hydrant usage and water system maintenance and operational use (water main flushing, filter system backwashing), the average SFE is 243m3 per year for 2023. This is a 15% decrease from the previous year.

WATER QUALITY

In general, the Fulford Water System provided good quality drinking water to its customers in 2023. Numerous samples for a variety of water quality parameters were collected and analysed throughout the year. The results confirmed that the DAF and disinfection treatment stages were effective in treating raw water from Lake Weston.

Typical Fulford drinking water quality characteristics for 2023 are summarized as follows:

Raw Water:

Lake Weston exhibited low concentrations of total coliform bacteria (TC) throughout most parts of the year with higher concentrations during the summer months. *E.coli* bacteria were only found in very low concentrations in the summer.

No parasitic cysts (*Giardia*) and no of parasitic oocysts (*Cryptosporidium*) were detected in the raw source water from the lake.

Raw water from the lake was slightly hard (annual median 34.95 mg/L CaCO₃).

A total organic carbon (TOC) concentration range from 5.3 to 5.7 mg/L indicates a mesotrophic (semi-productive) lake status. This has been consistent with historic data.

Four metal test results showed moderately low iron and manganese concentrations in the raw water, consistently below the aesthetic objective in the Guidelines for Canadian Drinking Water Quality (GCDWQ). Either of these metals in exceedance of the aesthetic objectives can cause, if untreated,

aesthetic issues such as water discolouration. The raw water colour was consistently elevated above the aesthetic objective, which may be a result of tannin and lignin, all natural components found in local lakes.

The raw water turbidity (cloudiness) was consistently below 1 NTU. In the past, Weston Lake has experienced occasionally elevated turbidity during heavy rainfall and runoff events. The absence of any periods with elevated turbidity indicates the lack of extreme rainfall events in 2023.

Treated Water:

Treated water was bacteriologically safe to drink; no indicator bacteria were found in any sample throughout the year.

Treated water turbidity was well below the GCDWQ limit of 1 NTU for the entire year.

TOC (median 2.25 mg/L) in the treated water was consistent with historic trends. As TOC is a precursor for disinfection by-products, concentrations consistently much higher than 2 mg/L can lead to exceedances with these substances.

Regulated disinfection by-products such as trihalomethanes (THM) were well below the GCDWQ limits (100 μ g/L) with an annual average of 54.5 μ g/L. Haloacetic acids (HAA) were not tested in 2023; historic data has shown that HAA concentrations are typically low when THM concentrations are low.

The water temperature was in exceedance of the aesthetic objective of 15°C from the end of May to September 2023. There is no mitigation for this.

The free chlorine residual concentrations in the distribution system were within the desired range (0.07 – 2.19 mg/L) and indicate a mostly effective secondary disinfection process. To achieve better residuals, distribution system ends should be flushed regularly during the summer months.

Table 1 and 2 below provide a summary of the 2023 raw and treated water test results.

Water Quality data collected from this drinking water system can be reviewed on the CRD website:

https://www.crd.bc.ca/about/data/drinking-water-quality-reports/

OPERATIONAL HIGHLIGHTS

The following is a summary of the major operational issues that were addressed by during the 2023 reporting period:

Water Treatment Plant:

- Replacement of Hand-Off-Auto (HOA) electrical switches.
- Electrical Improvements to Chlorine Pump and Chlorine Analyzer power source.
- Replaced a failed electrical component (Analog Input Card) on SCADA equipment.

Fulford Water System:

- Water leak investigation High water consumption. Resulted in 3 service lines being abandoned.
- Water leak investigation Public complaint. Water in the perimeter drains on Fulford-Ganges Rd.
- Water leak investigation—There was high water consumption. A new water main installation near Weston Creek needed repair work.
- Water leak investigation High water consumption. Found a hose left running on a property.
- Troubleshooting water service connection at 2914 Fulford-Ganges Rd.

CAPITAL IMPROVEMENTS

The following is a summary of the major capital improvements, including year-end spending for 2023:

<u>Weston Creek Watermain Crossing on Morningside Road (CE.507.4601)</u>: The water main along Morningside Road is exposed and spans Weston Creek, making it susceptible to damage by people, vehicles, rocks, or stream debris.

Project	Spending
Budget	\$169,100
Project Management	(\$83,456)
Design	(\$10,007)
Contract	(\$63,282)
Balance Remaining	\$12,355

<u>Safe Work Procedures (CE.699.4504)</u>: The work scope includes reviewing and developing safe work procedures for operational and maintenance tasks. Ongoing as capital improvements necessitate.

Project	Spending
Budget	\$11,000
Project Management	(\$457)
Contract	(\$2,292)
Supplies/Materials	(\$209)
Balance Remaining	\$8,042

<u>Power Generation Equipment Study (CE.735.4504)</u>: Preliminary investigation of electrical requirements for new onsite backup power.

Project	Spending
Budget	\$10,000
Project Management	(\$0)
Balance Remaining	\$10,000

<u>Replacement of AC Water Pipelines – Study and Design (CE.794.6001)</u>: Investigation, analysis, criticality assessment and option review to replace the asbestos cement water supply and distribution lines for the Fulford water system.

Project	Spending
Budget	\$90,000
Project Management	(\$22,209)
Contract	(\$27,368)
Balance Remaining	\$40,423

<u>Installation of Turbidity Meter on Influent Line (CE.794.1601)</u>: Supply and install a turbidity meter on the influent line to improve water quality monitoring and process operation.

Project	Spending
Budget	\$8,000
Project Management	(\$1,445)
Equipment	(\$0)
Balance Remaining	\$6,555

New Pump Impellors (CE.794.1701): Replacement of impellers of pumps at Sunnyside pump station to match WTP processing capacity.

Project	Spending
Budget	\$11,000
Project Management	(\$234)
Equipment	(\$0)
Balance Remaining	\$10,766

<u>Fulford WTP Lifting Apparatus (CE.837.2001)</u>: Support for a lifting apparatus is required at ceiling level to lift the 80lb lid for the Saturator and the confined space entry apparatus.

Project	Spending			
Budget	\$55,000			
Project Management	(\$1,470)			
Equipment	(\$0)			
Balance Remaining	\$53,530			

2023 FINANCIAL REPORT

Please refer to the attached 2023 Statement of Operations and Reserve Balances.

Revenue includes parcel taxes (Transfers from Government), fixed user fees (User Charges), water sales (Sale-Water), interest on savings (Interest earnings), transfers from the Operating Reserve Fund, and miscellaneous revenue such as late payment charges (Other revenue).

Expenses include all costs of providing the service. General government services include budget preparation, financial management, utility billing, and risk management. CRD Labour and Operating Costs include CRD staff time as well as the costs of equipment, tools, and vehicles. Debt servicing costs are interest and principal payments on long-term debt. Other Expenses include all other costs to administer and operate the water system, including insurance, supplies, water testing, and electricity.

The difference between Revenue and Expenses is reported as Net revenue (expenses). Any transfers to or from capital or reserve funds for the service (Transfers to own funds) are deducted from this amount and it is then added to any surplus or deficit carry forward from the prior year, yielding an Accumulated Surplus (or deficit). In alignment with Local Government Act Section 374 (11), any deficit must be carried forward and included in the next year's financial plan.

WATER SYSTEM PROBLEMS - WHO TO CALL:

To report any event or to leave a message regarding the Fulford water system, call either:

CRD water system *emergency call* centre: 1-855-822-4426 (toll free)

1-250-474-9630 (toll)

CRD water system *general enquiries* (toll free): 1-800-663-4425

When phoning with respect to an emergency, please specify to the operator, the service area in which the emergency has occurred.

Submitted by:	Jason Dales, Senior Manager B.Sc, WD IV, Infrastructure Operations			
	Glenn Harris, Ph.D., R.P.Bio., Senior Manager, Environmental Protection			
	an Ovington, BBA , Senior Manager, Salt Spring Island Electoral Area			
	Angela Linwood, CPA, CMA, Controller, Financial Services			
Concurrence:	Ted Robbins, B. Sc., C. Tech., Chief Administrative Officer			

Attachment: 2023 Statement of Operations and Reserve Balances

For questions related to this Annual Report please email saltspring@crd.bc.ca

PARAMETER		20	23 ANALYTI	CAL RESUL	TS	CANADIAN GUIDELINES	2013	- 2022 ANA	LYTICAL	RESULTS
Parameter	Units of	Annual	Samples	Rai	nge			Samples	Ra	ange
Name	Measure	Median	Analyzed	Minimum	Maximum	≤ = Less than or equal to	Median	Analyzed	Minimum	Maximur
means Not Detected by analytical m	nethod used									
		Ph	ysical Pa	rameter	s/Biolog	ical				
Colour, True	TCU	19.5	12	11	26	≤ 15 AO	21	91	1.2	34
Hardness as CaCO ₃	mg/L	34.95	4	32.8	37.2	No Guideline Required	34.6	28	28.9	61.3
<u> </u>										
pH	pH Units	7.8	2	7.6	8	7.0-10.5 AO	7.1	35	6.2	7.59
Carbon, total organic	mg/L	5.65	4	5.3	5.7		5.325	32	3.92	7
Turbidity Water Temperature	NTU Degrees C	0.45 13.7	12 36	0.2 7	0.65 20.5		0.62 12	128 513	0.2 2.5	4.92
water remperature	Degrees C	13.7	30	,	20.5		12	313	2.5	20
			Microb	ial Parar	motors					
Indicator Booton	<u> </u>		WIICIOD	nai i ai ai	Heters					
Indicator Bacter	ıa									
Coliform, Total	CFU/100 mL	120	11	< 1	420		26	125	<1	5500
E. coli	CFU/100 mL	<1	12	<1	1		< 1	128	<1	< 10
Hetero. Plate Count, 7 day	CFU/1 mL		Not teste				1110	39	90	3960
rictoro. Flato count, 7 day	OF GITTIE		140110010	G III 2020			1110	00	- 50	0000
Parasites						No MAC Established				
Cryptosporidium, Total oocysts	oocysts/100 L	<1	2	<1	<1	Zero detection desirable	< 1	4	< 1	< 1
Giardia, Total cysts	cysts/100 L	<1	2	<1	<1	Zero detection desirable	< 1	4	< 1	< 1
Algal Toxins								1		
T . 185	1 "		I			4.5.111.0				
Total Microcystins	ug/L		Last analyz	zed in 2011		1.5 MAC				
				Metals						
Aluminum	ug/L as Al	16.8	4	7.3	32.4	2900 MAC / 100 OG	23.4	28	5.5	4600
Antimony	ug/L as Sb	< 0.5	4	< 0.5	< 0.5	6 MAC	< 0.5	28	< 0.5	< 0.5
Arsenic	ug/L as As	0.245	4	0.23	0.26	10 MAC	0.255	28	0.2	0.82
Barium	ug/L as Ba	6.45 < 0.1	4 4	5.7 < 0.1	6.9 < 0.1	100 MAC	6.45 < 0.1	28 28	5.5 < 0.1	< 9 < 3
Beryllium Bismuth	ug/L as Be ug/L as Bi	<1	4	< 1	< 1		< 1	24	< 1	< 1
Boron	ug/L as B	< 50	4	< 50	< 50	5000 MAC	< 50	28	< 50	139
Cadmium	ug/L as Cd	< 0.01	4	< 0.01	< 0.01	7 MAC	< 0.01	28	< 0.01	0.2
Calcium	mg/L as Ca	11.3	4	10.4	12	No Guideline Required	11.15	28	9.2	17.5
Chromium	ug/L as Cr	<1	4	< 1	< 1	50 MAC	< 1	28	< 1	< 10
Cobalt	ug/L as Co	< 0.2	4	< 0.2	< 0.2		< 0.2	28	< 0.2	< 20
Copper	ug/L as Cu	8.175	4	6.22	14.3	2000 MAC / ≤ 1000 AO	< 8	28	5.92	55
Iron	ug/L as Fe	59.55	4	42.1	102	≤ 300 AO	81.7	28	< 10	285
Lead	ug/L as Pb	0.3	4	0.28	0.63	5 MAC	0.4	28	<0.2	1.08
Lithium	ug/L as Li	< 2	4	< 2	< 2	N. O.I. II. D. I. I.	< 2	15	< 2	< 2
Magnesium	mg/L as Mg	1.68	4	1.58	1.74	No Guideline Required	1.64	28	1.44	4.28
Manganese Molybdenum	ug/L as Mn ug/L as Mo	3.7 <1	4	2.9 < 1	14.3	120 MAC / ≤ 20 AO	6.85 < 1	28 28	1.1	48.4 < 20
Nickel	ug/L as Ni	3.4	4	1.6	5.1		<1	28	< 1	< 50
Potassium	mg/L as K	0.616	4	0.609	0.677		0.5565	28	0.032	0.672
Selenium	ug/L as Se	< 0.1	4	< 0.1	< 0.1	50 MAC	< 0.1	27	< 0.1	< 0.5
Silicon	ug/L as Si	1125	4	601	2840		2015	28	2.48	10800
Silver	ug/L as Ag	< 0.02	4	< 0.02	< 0.02	No Guideline Required	< 0.02	28	< 0.02	< 10
Sodium	mg/L as Na	5.49	4	5.17	5.88	≤ 200 AO	5.32	28	3.98	9.66
Sulphur	mg/L as S	< 3	4	< 3	< 3		< 3	24	< 3	< 3
Strontium	ug/L as Sr	31.2	4	30.3	35	7000 MAC	31.75	28	25	57
Tin	ug/L as Sn	< 5	4	< 5	< 5		< 5	27	< 5	< 20
Thallium	ug/L as Ti	< 0.01	4	< 0.01	< 0.01		< 0.01	24	< 0.01	< 0.05
Titanium Uranium	ug/L as Ti ug/L as U	< 5 < 0.1	4	< 5 < 0.1	< 5 < 0.1	20 MAC	< 5 < 0.1	28 24	< 5 < 0.1	< 10 < 0.1
Vanadium	ug/L as V	< 0.1	4	< 0.1	< 0.1	ZU IVIAU	< 5	28	< 5	< 10.1
Zinc	ug/L as V	13.85	4	12.8	17.5	≤ 5000 AO	14.15	28	<1	297
Zirconium	ug/L as Zr	< 0.1	4	< 0.1	< 0.1	_ 0000710	< 0.1	24	< 0.1	< 0.5

PARAMETER PARAMETER			, Fulford \							
PARAMETER Linite of		2023 ANALYTICAL RESULTS Annual Samples Range			CANADIAN GUIDELINES			22 RESULTS		
Parameter Name	Units of Measure	Annual Median	Samples Analyzed	Min.	nge Max.	\leq = Less than or equal to	Median	Samples Analyzed	Minimum	ange Maximu
means Not Detected by analytica		IVIEUIAIT	Analyzeu	IVIII I.	IVICIX.		Median	Analyzeu	Willimum	Maximu
Thousand Not Detected by analytics	arriburou doca		Phys	ical Par	ameters					
			1 1190	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Carbon, Total Organic	mg/L as C	2.25	4	2	2.5		2.25	40	0.23	3.45
Colour, True	TCU	< 2	12	< 2	4	≤ 15 AO	< 2	25	0.7	23
Hardness as CaCO ₃	mg/L	34.7	4	32.6	36.4	No Guideline Required	33.3	21	28.8	46.7
pH	pH units	7	4	6.9	7.1	7.0-10.5 AO	6.9	36	6.1	7.76
Turbidity	NTU	0.1	12	0.05	0.2	1 MAC and ≤ 5 AO	< 0.14	159	0.06	4.71
Water Temperature	Degress C	11	232	4.5	22		11	2656	0.5	24
			Micro	bial Par	ameters	;				
Indicator Bacte	eria									
O.17 T	0511/400		70			0.144.0				
Coliform, Total	CFU/100 mL	<1	76 70	<1	< 1	0 MAC	< 1	558	0	9
E. coli	CFU/100 mL CFU/1 mL	<1	76 Not teste	< 1	< 1	0 MAC No Guideline Required	< 1 < 10	558 40	<1 < 10	< 1 110
Hetero. Plate Count, 7 day	CFU/TIIL		Not teste	u III 2023		No Guideline Required	< 10	40	< 10	110
Algal Toxin	S									
Total Microcystins	ug/L		Last analyz	zed in 2011		1.5 MAC				
Total Microcystins	ug/L		Last arranyz	200 III 2011		1.5 WAC				
				Disinfect	ants					
Disinfectant	s		1							
Chlorine, Free Residual	mg/L as Cl2	0.575	250	0.07	2.19	No Guideline Required	0.66	2815	0.16	2.43
Chlorine, Total Residual	mg/L as Cl ₂	1.07	59	0.07	2.19	No Guideline Required	0.79	2648	0.16	2.43
	0 -					·				
			Disinfe	ction By	-Produc	cts				
Trihalomethanes	(THMs)									
Dun and distributions	1/1	44.45		0.4	40		40.0	20		0.4
Bromodichloromethane	ug/L	11.15	4	9.1	16		12.8	39	8	24
Bromoform	ug/L	<1	4	< 1	< 1		< 1	39	< 0.1	< 1
Chloroform	ug/L	42	4	34	57		51	39	27	130
Chlorodibromomethane Total Trihalomethanes	ug/L ug/L	1.8 54.5	4	1 44	2.6 75	100 MAC	1.6 66.7	39 39	<0.1 38.8	5.46 160
Total Trinalotticularies	ug/L	34.3	, , , ,		13	100 WAG	00.7	- 55	30.0	100
HAA5	ug/L		Not teste	d in 2023			28.6	9	5.1	44
				Metals	-					
				IVICIAI	·					
Aluminum	ug/L as Al	13.15	4	9.5	14.5	2900 MAC / 100 OG	12.05	22	7.3	228
Aluminum Antimony	ug/L as Al ug/L as Sb	13.15 < 0.5	4 4	9.5 < 0.5	14.5 < 0.5	2900 MAC / 100 OG 6 MAC	12.05	22 21	7.3 < 0.5	
	-									< 0.5
Antimony Arsenic Barium	ug/L as Sb ug/L as As ug/L as Ba	< 0.5 0.13 6	4 4 4	< 0.5 0.11 5.5	< 0.5 0.18 6.5	6 MAC	< 0.5 0.145 6.3	21 21 21	< 0.5 <0.1 5.2	< 0.5 0.837 < 9
Antimony Arsenic Barium Beryllium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be	< 0.5 0.13 6 < 0.1	4 4 4 4	< 0.5 0.11 5.5 < 0.1	< 0.5 0.18 6.5 < 0.1	6 MAC 10 MAC	< 0.5 0.145 6.3 < 0.1	21 21 21 21	< 0.5 <0.1 5.2 < 0.1	< 0.5 0.837 < 9 < 3
Antimony Arsenic Barium Beryllium Bismuth	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi	< 0.5 0.13 6 < 0.1 < 1	4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1	< 0.5 0.18 6.5 < 0.1 < 1	6 MAC 10 MAC 100 MAC	< 0.5 0.145 6.3 < 0.1 < 1	21 21 21 21 21 16	< 0.5 <0.1 5.2 < 0.1 < 1	< 0.5 0.837 < 9 < 3 < 1
Antimony Arsenic Barium Beryllium Bismuth Boron	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B	< 0.5 0.13 6 < 0.1 < 1 < 50	4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50	< 0.5 0.18 6.5 < 0.1 < 1 < 50	6 MAC 10 MAC 100 MAC 5000 MAC	< 0.5 0.145 6.3 < 0.1 < 1 < 50	21 21 21 21 21 16 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50	< 0.5 0.837 < 9 < 3 < 1 161
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd	< 0.5 0.13 6 < 0.1 < 1 < 50 < 0.01	4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01	< 0.5 0.18 6.5 < 0.1 < 1 < 50 < 0.01	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC	< 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01	21 21 21 21 16 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01	< 0.5 0.837 < 9 < 3 < 1 161 0.352
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15	4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4	< 0.5 0.18 6.5 < 0.1 < 1 < 50 < 0.01 11.8	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	21 21 21 21 16 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Ca	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1	4 4 4 4 4 4 4 4 4	<0.5 0.11 5.5 <0.1 <1 <50 <0.01 10.4 <1	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1	21 21 21 21 16 21 21 21 21	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2	4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2	21 21 21 21 16 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Cd ug/L as Ca ug/L as Cr ug/L as Co ug/L as Co	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15	4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 17.1	21 21 21 21 16 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Cu	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5	4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.02 50.1 <5	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO	< 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5	21 21 21 21 16 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5	<0.500 < 0.837 < 9
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Co ug/L as Co	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <55 0.86	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 17.1 <5 <0.5	21 21 21 21 16 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23	<0.837 <9 <3 <1 161 0.352 15.6 <10 <20 130 47 2.43
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <55 0.86 <2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC	< 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 0.5 < 2	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2	<0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 <20 130 47 2.43 < 2
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Cu ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mg	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	< 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 0.5 < 2 1.59	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886	<0.5 0.837 <9 <3 <1 161 0.352 15.6 <10 <20 130 47 2.43 <2 1.85
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Li mg/L as Mg	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.74 <1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 17.1 <5 <0.5 <0.5 <2 1.59 <1	21 21 21 21 21 6 21 21 21 21 21 21 21 21 21 21 21 21	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <5 0.23 <2 0.886 <1	<0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Cu ug/L as Cu ug/L as Fe ug/L as Fb ug/L as Mg ug/L as Mo	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <1.74 <1 <1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 17.1 <5 <0.2 17.5 <1.59 <1 <1	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <5 0.23 <2 0.886 <1 <1	<0.5 0.837 <9 <3 <1 101 161 15.6 <10 <20 130 47 2.43 <2 1.855 <4 <20
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Li mg/L as Mg ug/L as Mo ug/L as Mo	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 < 1 < 1	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74 <1 <1 <1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	<0.5 0.145 6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 17.1 <5 <0.5 <1 <1.5 <1 <1.5 <1.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 1	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 < 50
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Mg ug/L as Mn ug/L as Ni mg/L as K	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <0.66145	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74 <1 <1 <1 <0.651	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	<0.5 0.145 6.3 <0.1 <1 <10 <0.01 10.8 <1 <0.02 17.1 <55 <0.5 <2 1.59 <1 <1 <1 <0.551	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	<0.5 <0.1 5.2 <0.1 <10 <50 <0.01 9.2 <1 <0.02 <8 <5 0.23 <2 0.886 <1 <1 <1 <0.03	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 < 50 0.624
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Co ug/L as Co ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Mi mg/L as Ki	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596 < 0.1	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74 <1 <1 <1 <0.651 <0.1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 0.5 < 2 1.59 < 1 < 1 < 0.551 < 0.1 	21 21 21 21 6 21 21 21 21 21 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.1	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 < 50 0.624 < 0.1
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fb ug/L as Mo ug/L as Mo ug/L as Ki	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.1 1002.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 < 1 0.596 < 0.1 598	<0.5 0.18 6.5 <0.1 <10 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74 <1 <1 <1 0.651 <0.1 2640	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 2 1.59 < 1 < 1 < 0.551 < 0.1 1880 	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.03 < 0.1 317	< 0.5 0.837 < 9 < 3 < 1 161 10.352 15.6 < 10 < 20 130 47 47 47 42 48 < 20 < 50 0.624 < 0.1 3390
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Cu ug/L as Cu ug/L as Cu ug/L as Fb ug/L as Mg ug/L as Mn ug/L as Mo ug/L as Ni mg/L as Ki ug/L as Se ug/L as Se ug/L as Se	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.01 1002.5 <0.02	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596 < 0.01 598 < 0.02	<0.5 0.18 6.5 <0.1 <10 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.74 <1 <1 <1 <0.651 <0.01 2640 <0.02	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 2 1.59 < 1 < 1 < 0.551 < 0.01 1880 < 0.02 	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <50 0.23 <2 0.886 <1 <1 <10 <0.03 <0.01 317 <0.02	< 0.5 0.837 < 9 < 3 < 1 161 161 1.56 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 < 50 0.622 < 0.13 3390 < 10
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Se ug/L as Si ug/L as Si	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.01 1002.5 <0.02 7.46	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 5.0 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 < 1 0.596 < 0.01 598 < 0.02 7.1	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.74 <1 <1 <1 <0.2 1.74 <1 <1 <1 <0.2 1.74 <1 <1 <1 <0.2 1.74 <1 <1 <1 <0.2 1.74 <1 <1 <1 <0.2 1.74 <1 <1 <0.2 1.74 <1 <0.2 1.74 <1 <0.2 1.74 <1 <0.2 1.74 <1 <0.2 1.74 <1 <0.2 1.74 <1 <0.2 1.74 <1 <0.0 1.74 <1 0.0 1.74 <1 0.0 1.74 <1 0.0 1.74 <1 0.0 1.74 <1 0.0 1.74 <1 0.0 1.74 0.0	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	 < 0.5 0.145 6.3 < 0.1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 0.5 < 2 1.59 < 1 < 1 < 0.551 < 0.01 1880 < 0.02 6.99 	21 21 21 21 21 21 21 21 21 21 21 21 21 2	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <5 0.23 <2 0.886 <1 <1 <10 <0.03 <0.01 317 <0.02 4.56	<0.5 0.837 <9 <3 <1 161 0.352 15.6 <100 <20 130 47 2.43 <22 1.85 <4 <20 <50 0.624 <0.1 33999 <100 7.93
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Se ug/L as Si ug/L as Si ug/L as Si	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.01 1002.5 <0.02 7.46 <3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596 < 0.01 598 < 0.02 7.1 < 3	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74 <1 <1 <0.651 <0.01 2640 <0.02 8.11 <3	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.145 6.3 <0.1 <1 <50 0.01 10.8 <1 <0.2 17.1 <5 <0.5 <2 1.59 <1 <1 <1 0.551 <0.1 880 <0.02 6.99 <3	21 21 21 21 21 21 21 21 21 21 21 21 21 2	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <5 0.23 <2 0.886 <1 <1 <1 <0.03 <0.01 <317 <0.02 4.56 <3	<0.5 0.837 <9 <3 <1 161 161 161 161 161 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Bi ug/L as Cd mg/L as Cd mg/L as Cr ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Ni mg/L as Mo ug/L as K ug/L as Se ug/L as Se ug/L as Si ug/L as Si ug/L as Ag mg/L as Na mg/L as Si ug/L as Si	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.1 1002.5 <0.02 7.46 <3 30.6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 < 1 0.596 < 0.1 598 < 0.02 7.1 < 3 29.5	<0.5 0.18 6.5 <0.1 <1 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <2 1.74 <1 <1 <1 0.651 <0.1 2640 <0.02 8.11 <3 35.6	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.5 < 2 17.1 < 5 < 0.5 < 2 1.59 < 1 < 1 < 0.551 < 0.1 1880 < 0.02 6.99 < 3 31.3 	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	< 0.5 <0.1 5.2 < 0.1 5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.03 < 0.1 317 < 0.02 4.56 < 3 26	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 13390 < 4 < 0.1 3390 < 10 7.933 39
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Fe ug/L as Pb ug/L as Hi mg/L as Mg ug/L as Mi ug/L as Ni mg/L as K ug/L as Se ug/L as Si	<0.5 0.13 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 0.6145 <0.1 1002.5 <0.02 7.46 <3 30.6 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596 < 0.1 598 < 0.02 7.1 < 3 29.5 < 5	<0.5 0.18 6.5 <0.1 <10.1 <10.2 <10.1 <10.2 <10.1 <10.2 <10.1 <10.2 <10.1 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2 <10.2	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 0.5 < 2 1.59 < 1 < 1 < 0.551 < 0.01 1880 < 0.02 6.99 < 3 31.3 < 5 	21 21 21 21 21 21 21 21 21 21 21 21 21 2	<0.5 <0.1 5.2 <0.1 5.2 <0.1 <10 <50 <0.01 9.2 <1 <0.2 <8 <5 0.23 <2 0.886 <1 <1 <1 <0.03 <0.1 317 <0.02 4.56 <3 26 <55	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 0.622 < 0.1 3390 < 10 7.93 < 3 9 < 20
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Se ug/L as Mg ug/L as Mg ug/L as Mn ug/L as Mn ug/L as Ni mg/L as Ni mg/L as Se ug/L as Se ug/L as Si ug/L as Sr ug/L as Sr ug/L as Sr	<0.5 0.13 6 <0.1 1 1.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 0.6145 <0.1 1002.5 <0.02 7.46 <3 30.6 <5 <0.01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596 < 0.01 598 < 0.02 7.1 < 3 29.5 < 5 < 0.01	<0.5 0.18 6.5 <0.1 <10.1 <10.2 50.1 <10.2 50.1 <10.2 50.1 <10.2 1.74 <1 <1 <1 0.651 <0.02 8.11 <33 35.6 <5 <0.001	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 0.5 < 2 1.59 < 1 < 1 < 0.0551 < 0.01 1880 < 0.02 6.99 < 3 31.3 < 5 < 0.01 	21 21 21 21 21 21 21 21 21 21 21 21 21 2	<0.5 <0.1 5.2 <0.1 5.2 <0.1 <10 <50 <0.01 9.2 <1 <0.2 <8 <5 0.23 <2 0.886 <1 <1 <0.03 <0.1 317 <0.02 4.56 <3 26 <5 <0.01	< 0.5 0.837 < 9 < 3 < 1 161 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 < 0.1 3390 < 10 7.93 < 3 39 < 20 < 0.0
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin Thallium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Be ug/L as Cd mg/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Fb ug/L as Mg ug/L as Mn ug/L as Mn ug/L as Ni mg/L as Ni mg/L as Se ug/L as Si	<0.5 0.13 6 <0.1 6 <0.01 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 <0.6145 <0.01 1002.5 <0.02 7.46 <3 3 30.6 <5 <0.001 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 < 1 < 1 < 3.2 2.99 < 5 < 5 < 0.01 < 5 < 0.1 598 < 0.02 7.1 < 3 29.5 < 5 < 0.01 < 5	<0.5 0.18 6.5 <0.1 <10 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <1 <1 <1 <1 <0.2 1.74 <1 <1 <1 <1 <0.651 <0.01 2640 <0.002 8.11 <3 35.6 <5 <0.01 <5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 2 1.59 < 1 < 1 < 0.551 < 0.0 < 0.02 6.99 < 3 31.3 < 5 < 0.01 < 5 	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	<0.5 <0.1 5.2 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <55 0.23 <2 0.886 <1 <1 <1 <0.03 <0.1 317 <0.02 4.56 <3 26 <5 <0.01 <5	 < 0.5 0.837 < 9 < 3 < 1 161 165 < 10 < 20 130 47 < 2.43 < 2 < 1.85 < 4 < 20 < 50 < 60.1 < 7.93 < 3 < 39 < 20 < 0.0 < 10 <l>< 10 < 10 < 10 < 10 < 10</l>
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin Thallium Titanium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Cu ug/L as Si ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Ni mg/L as Se ug/L as Si ug/L as Si ug/L as Sr ug/L as Sn	<0.5 0.13 6 <0.1 6 <0.1 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 0.6145 <0.1 1002.5 <0.02 7.46 <3 30.6 <5 <0.01 <5 <0.01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 0.596 < 0.01 598 < 0.02 7.1 < 3 29.5 < 5 < 0.01 < 5 < 0.01 < 5 < 0.01	<0.5 0.18 6.5 <0.1 <10 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.74 <1 <1 <0.651 <0.02 8.11 <3 35.6 <0.01 <5 <0.01 <5 <0.01 <5 <0.01 <0.02 <0.02 <0.02 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 2 1.59 < 1 < 1 < 0.551 < 0.01 1880 < 0.02 6.99 < 3 31.3 < 5 < 0.01 < 5 < 0.01 < 5 < 0.01 	21 21 21 21 21 21 21 21 21 21 21 21 21 2	<0.5 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <55 0.23 <2 0.886 <1 <1 <10 <0.03 <0.1 317 <0.02 4.56 <3 26 <5 <0.01 <5 <0.01 <5 <0.01	 < 0.5 0.837 < 9 < 3 < 1 1611 0.352 15.6 < 10 < 20 130 47 2.43 < 2 1.85 < 4 < 20 < 50 < 6.624 < 0.13 3390 < 10 < 7.93 < 3 39 < 20 < 0.0 < 10 < 0.1
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin Thallium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Be ug/L as Cd mg/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Fb ug/L as Mg ug/L as Mn ug/L as Mn ug/L as Ni mg/L as Ni mg/L as Se ug/L as Si	<0.5 0.13 6 <0.1 6 <0.01 <1 <50 <0.01 11.15 <1 <0.2 20.15 <5 0.86 <2 1.66 <1 <1 <1 <0.6145 <0.01 1002.5 <0.02 7.46 <3 3 30.6 <5 <0.001 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.11 5.5 < 0.1 < 1 < 50 < 0.01 10.4 < 1 < 0.2 2.99 < 5 0.52 < 2 1.59 < 1 < 1 < 1 < 1 < 3.2 2.99 < 5 < 5 < 0.01 < 5 < 0.1 598 < 0.02 7.1 < 3 29.5 < 5 < 0.01 < 5	<0.5 0.18 6.5 <0.1 <10 <50 <0.01 11.8 <1 <0.2 50.1 <5 1.11 <1 <1 <1 <1 <0.2 1.74 <1 <1 <1 <1 <0.651 <0.01 2640 <0.002 8.11 <3 35.6 <5 <0.01 <5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	 < 0.5 0.145 6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 17.1 < 5 < 2 1.59 < 1 < 1 < 0.551 < 0.0 < 0.02 6.99 < 3 31.3 < 5 < 0.01 < 5 	21 21 21 21 16 21 21 21 21 21 21 21 21 21 21 21 21 21	<0.5 <0.1 5.2 <0.1 5.2 <0.1 <1 <50 <0.01 9.2 <1 <0.2 <8 <55 0.23 <2 0.886 <1 <1 <1 <0.03 <0.1 317 <0.02 4.56 <3 26 <5 <0.01 <5	<0.5 0.837 <9 <3 <1 161 161 161 161 161 17 180 47 2.43 <2 <1.85 <4 <20 <50 0.624 <0.1 3390 <17.93 <3