Beddis Water Service

2024 Annual Report

INTRODUCTION

This report provides a summary of the Beddis Water Service for 2024. It includes a description of the service, summary of the water supply, demand, and production, drinking water quality, operations highlights, capital project updates and financial report.

SERVICE DESCRIPTION

The Beddis Water Utility is a rural residential community located on Salt Spring Island. The service was created in 1969 as the Beddis Waterworks District and became a CRD service in 2004. The Beddis Water Utility (Figure 1) is comprised of 137 parcels of land of which 128 are presently connected to the system.

The utility obtains its drinking water from Cusheon Lake, a relatively small lake that lies within an uncontrolled multi-use watershed. The Capital Regional District (CRD) holds two licenses to divert a total of up to 102,850 m³ per year. Cusheon Lake is subject to seasonal water quality changes and is affected by periodic algae blooms.

Figure 1: Beddis Water Service

The Beddis water system is primarily comprised of:

- water treatment plant (WTP) that draws water from Cusheon Lake and treats it at a location on Cusheon Road approximately 250m west of Lautman Drive. The water is treated using a rapid mix system, flocculation, dissolved air floatation (DAF) and filters, then chlorination prior to being pumped, via the distribution system to reservoirs. The water treatment plant (WTP) design flow is rate is 16.35 m³/hour (60 Igpm)
- approximately 7,200 m of water distribution pipe
- 1 pump station/re-chlorination station
- 2 water reservoirs one 45 m³ (10,000 lgal) and one 76 m³ (16,700 lgal)
- fire hydrants, standpipes, and gate valves
- water service connections complete with water meters
- 2 pressure regulating stations (PCS) Stewart Road and Creekside Drive

WATER PRODUCTION AND DEMAND

Referring to Figure 2, 19,855 cubic meters (m³) of water was extracted (water production) from Cusheon Lake in 2024; a 4% decrease from the previous year and is 21% decrease from the five-year rolling average. Water demand (customer water billing) for the service totalled 15,845 m³ of water; an 12% decrease from the previous year and a 17% decrease from the five-year rolling average. Both production and demand were historic lows for the service area.

Figure 2: Beddis Water Service Annual Water Production and Demand

Water production by month for the past five years is shown in Figure 3. The monthly water production trends are typical for small water systems such as the Beddis water service.

Figure 3: Beddis Water Service Monthly Water Production

The Beddis Water System is fully metered, and water meters are read quarterly. Water meter information enables water production and consumption to be compared in order to estimate leakage losses in the distribution system. The difference between water produced and water demand (total metered consumption) is called non-revenue water and includes distribution leaks, meter error, and unmetered uses such as fire hydrant usage, distribution system maintenance, and process water for the treatment plant. Non-revenue water is approximately 20%. Water loss is estimated to be approximately 14% which is considered acceptable for small water systems.

WATER QUALITY

In 2024, the analytical results of water samples collected from the Beddis Water System indicated that the drinking water was of good quality. The source water from Cusheon Lake was of good quality throughout the year with low concentrations of algae, most metals and generally low turbidity. Indicator bacteria concentrations (total coliforms) in the raw water were very low between November and May and higher during the warm weather season. Manganese and iron concentrations were elevated in Cusheon Lake throughout all seasons but summer. Due to a lack of specific metal removal treatment, the aesthetic objective for manganese in the Guidelines for Canadian Drinking Water Quality (GCDWQ) was exceeded in the treated water during the quarterly sampling events in November and February and was likely exceeded to the entire period between these sampling events. Manganese concentrations in exceedance of the aesthetic objectives can lead to water discolouration and become a nuisance for customers. The maximum acceptable concentration (MAC) in the GCDWQ for manganese was never reached. Besides this, the DAF treatment system functioned very well under these source water conditions. The annual average of the disinfection by-product concentrations was below the limit in the GCDWQ in both sampled locations. However, a few individual results in 2024 came very close to or even slightly exceeded the MAC for the disinfection by-product trihalomethanes (THM) indicating the potential for exceedances if

source water conditions are not ideal and chlorine dosage is not carefully managed. Other than water temperature during the summer months, there have been no exceedances of any monitored water quality parameter in the system.

The data below provides a summary of the water quality characteristics in 2024:

Raw Water:

- The raw water exhibited typically low concentrations of total coliform and *E. coli* bacteria throughout the year with significantly higher concentrations during the summer months. These higher bacteria concentrations during summer are easily addressed by the water treatment process.
- No Giardia cysts or Cryptosporidium oocysts were detected in 2024.
- The raw water samples indicated fluctuating and elevated concentrations of iron and manganese.
 Iron and manganese concentrations were typically above the aesthetic objectives during all seasons but summer.
- The raw water was soft (median hardness 37.2 mg/L CaCO₃).
- The raw water turbidity (cloudiness) was often below 1 NTU with some higher peaks in the winter.
 Highest recorded raw water turbidity was 4.0 NTU on January 18, 2024. Higher turbidity levels during the fall is typical for this water source.
- The median annual total organic carbon, an indicator of organic compounds and material in the lake water, was a moderate 4.95 mg/L. This demonstrates a slightly upward trend in recent years potentially indicating increasing algal activity in Cusheon Lake.
- Cusheon Lake raw water had a high colour rating all year in 2024, which is typical.
- CRD staff tested raw water entering the treatment plant for per-and polyfluoroalkyl substances (PFAS) in the fall of 2024. The result was non-detect with a detection limit of 4 ng/L or less.

Treated Water:

- The treated water was bacteriologically safe to drink. No sample tested positive for *E.coli* or total coliform bacteria.
- The treated water turbidity was always well below the turbidity limit of 1.0 NTU with an annual median of <0.15 NTU. This indicates the high efficacy of the existing water treatment process and overall good drinking water quality.
- The annual average levels of the disinfection by-products trihalomethanes (TTHM = 67.3 μg/L) across the distribution system were below the MAC limits in the GCDWQ (100 μg/L). Individual results however were close or even above the MAC during May and June. Haloacetic acids (HAA) were not tested in 2024; historic data has shown that HAA concentrations are typically low when TTHM concentrations are low.
- The treated water total organic carbon (TOC) was in line with historical trends, with a median value of 2.2 mg/L. There is currently no guideline in the GCDWQ for TOC levels, however the USEPA suggests a treated water TOC concentration of < 2 mg/L as confirmation of effective treatment and disinfection by-product control.
- All treated water sampled were low in iron concentrations. Manganese concentrations exceeded
 the aesthetic limit as per GCDWQ in November and February at the water treatment plant. It is
 likely that this exceedance extended throughout this entire winter period. The manganese health
 limit MAC was never reached. Cusheon Lake is known for the potential of seasonally high iron
 and manganese concentrations. Such exceedances can lead to water discolouration.
- The aesthetic limit for water temperature (15°C) was exceeded from May until October. This is a

common occurrence in this water system during the summer months.

Table 1 and 2 below provide a summary of the 2024 raw and treated water test results.

Water Quality data collected from this drinking water system can be reviewed on the CRD website:

https://www.crd.bc.ca/about/data/drinking-water-quality-reports

OPERATIONAL HIGHLIGHTS

The following is a summary of the major operational issues that were addressed during the 2024 operating period:

- Water System leak repairs:
 - 131 Lionel Creek service line repair
 - 211 Creekside Drive service line repair
 - o 1475/1483 Beddis Rd service line repair
- Water Treatment Plant corrective maintenance:
 - o Replaced failed backwash and rinse to waste valve actuators
 - Uninterrupted power supply (UPS) maintenance and replacement
 - o Replaced failed booster pump variable frequency drive (VFD) capacitors
 - Troubleshoot and repair flow sensors
 - Saturator pump repair

CAPITAL IMPROVEMENTS

The following is a summary of the major capital improvements, including year-ending spending for 2024:

<u>Water Intake Assessment/Design (CE.676.7501)</u>: The intake pumps have been drawing in air/gas, resulting in reduced flow and even air-locking of the pump(s). This project will be complete in Q2 2025.

Project	Spending
Budget	\$302,725
Project Management	(\$44,820)
Design (Engineering, Drafting, etc.)	(\$72,792)
Construction	(\$71,842)
Balance Remaining	\$113,271

<u>Safe Work Procedures (CE.699.4503)</u>: The work includes reviewing and developing safe work procedures for operational and maintenance tasks, and ongoing capital improvements.

Project	Spending
Budget	\$12,000
Project Management	(\$605)
Contract	(\$2,478)
Supplies/Materials	(\$209)
Balance Remaining	\$8,708

<u>Back-up Power Design (CE.735.4502)</u>: Complete electrical designs for new onsite backup power. This project was included in Project 26-02 so this project was closed at the end of 2024 and funds were returned back to the source.

Project	Spending
Budget	\$10,000
Project Management	(\$0)
Balance Remaining	\$10,000

Sky Valley New Booster Pump & Reservoir (CE.831.5101): The work includes designs for a new booster pump and reservoir as the Sky Valley Upper Reservoir is reaching the end of its useful life. A new reservoir will be built next to the existing Sky Valley Lower Reservoir as well as a booster pump to service the Upper Sky Valley pressure zone.

Project	Spending
Budget	\$33,000
Project Management	(\$2,361)
Contract	(\$0)
Supplies/Materials	(\$0)
Balance Remaining	\$30,639

<u>Beddis WTP Lifting Apparatus (CE.836.2001)</u>: Support for a lifting apparatus is required at ceiling level to lift the 80lb lid for the saturator and for a confined space entry apparatus over the DAF system. This project will be completed in Q1 of 2025.

Project	Spending
Budget	\$55,000
Project Management	(\$7,040)
Design	(\$9,528)
Construction	(\$7,008)
Balance Remaining	\$31,424

<u>Beddis PRV Strainers (CE.836.2002)</u>: Install inline strainer Stewart Road PRS and Creekside Road PRS. Strainers provide a measure of filtration to minimize maintenance and assurance of supply of water. Operations has determined that this project is no longer required so it will be closed out in 2025.

Project	Spending
Budget	\$11,000
Project Management	(\$1,864)
Contract	(\$0)
Supplies/Materials	(\$0)
Balance Remaining	\$9,136

Replacement of Variable Frequency Drives (CE.836.2003): The VFDs require replacement. This project results in new capacitors for the VFDs for the two booster pumps. New capacitors will extend the life of the VFDs several more years. This project was closed at the end of 2024 and surplus funds returned to source.

Project	Spending
Budget	\$9,000
Project Management	(\$3,172)
Supplies/Materials	(\$4,023)
Balance Remaining	\$1,805

Referendum for Borrowing (CE.836.4601): Referendum for borrowing for debt funded projects.

Project	Spending
Budget	\$20,000
Project Management	(\$27)
Balance Remaining	\$19,973

<u>Public Engagement for Debt Funded Projects (CE.836.4602)</u>: Public engagement for projects requiring debt funding.

Project	Spending
Budget	\$10,000
Project Management	(\$54)
Balance Remaining	\$9,946

2024 FINANCIAL REPORT

Please refer to the attached 2024 Statement of Operations and Reserve Balances.

Revenue includes parcel taxes (Transfers from Government), fixed user fees (User Charges), water sales (Sale-Water), interest on savings (Interest earnings), transfers from the Operating Reserve Fund, and miscellaneous revenue such as late payment charges (Other revenue).

Expenses include all costs of providing the service. General Government Services include budget preparation, financial management, utility billing and risk management services. CRD Labour and Operating Costs include CRD staff time as well as the costs of equipment, tools, and vehicles. Debt servicing costs are interest and principal payments on long-term debt. Other Expenses include all other costs to administer and operate the water system, including insurance, water testing, and electricity.

The difference between Revenue and Expenses is reported as Net revenue (expenses). Any transfers to or from capital or reserve funds for the service (Transfers to own funds) are deducted from this amount, and it is then added to any surplus or deficit carried forward from the prior year, yielding an Accumulated Surplus (or deficit). In alignment with Local Government Act Section 374 (11), any deficit must be carried forward and included in the next year's financial plan.

WATER SYSTEM PROBLEMS - WHO TO CALL:

To report any event or to leave a message regarding the Beddis Water System, call either:

CRD water system emergency call centre: 1-855-822-4426 (toll free)

1-250-474-9630 (toll)

CRD water system general enquiries (toll free): 1-800-663-4425

When phoning with respect to an emergency, please specify to the operator, the service area in which the emergency has occurred.

Submitted by:	Jason Dales, Senior Manager B.Sc, WD IV, Infrastructure Operations
	Glenn Harris, Ph.D., R.P.Bio., Senior Manager, Environmental Protection
	Dan Ovington, BBA , Senior Manager, Salt Spring Island Electoral Area
	Varinia Somosan, CPA, CGA, Sr. Mgr., Financial Services / Deputy CFO

Concurrence:	Ted Robbins, B. Sc., C. Tech., Chief Administrative Officer
ppendix A : <u>2024</u>	Statement of Operations and Reserve Balances
or questions relat	ted to this Annual Report please email: saltspring@crd.bc.ca

PARAMETER			dis Water		TO.	CANADIAN CURRENT		0000 41	LVTICAL	COL"
				CAL RESUL		CANADIAN GUIDELINES	2014		LYTICAL F	
Parameter	Units of	Annual	Samples		nge I Massimus	\leq = Less than or equal to	Madian	Samples		inge Marrier
Name	Measure	Median	Analyzed	Minimum	Maximum		Median	Analyzed	Minimum	Maximu
		Phy	vsical Pa	arameter	s/Bioloa	ical				
Colour, True	TCU	20	17	13.9	29	≤ 15 AO	16	147	6	35
Hardness as CaCO ₃	mg/L	37.2	4	35.3	39.7	No Guideline Required	35.7	41	17.9	42
pH	pH Units	7.35	3	6.1	7.1	7.0-10.5 AO	7.2	33	6.1	7.7
Carbon, Total Organic	mg/L	4.95	12	4.4	9		4.34	81	1.5	6.57
Turbidity	NTU	0.65	17	0.35	4		0.865	174	< 0.14	11
Water Temperature	Degrees C	13.75	48	3.9	25.5	≤ 15 AO	14.85	498	3	26.6
Indicator Docto	-1-		Microb	ial Para	meters					
Indicator Bacte	ria									
Coliform, Total	CFU/100 mL	65	17	4	870		67	171	<1	4600
E. coli	CFU/100 mL	<1	17	< 1	3		< 1	173	<1	122
Hetero. Plate Count, 7 day	CFU/1 mL			d in 2024			1200	64	170	1190
riotoror riato ocarii, r aay	G. G. 1		110110010	0 202 .			.200			
Parasites			1					1		
ryptosporidium, Total oocysts	oocysts/100 L	<1	2	<1	<1	Zero detection desirable	< 1	24	< 1	2.45
Giardia, Total cysts	cysts/100 L	<1	2	<1	<1	Zero detection desirable Zero detection desirable	< 1	25	< 1	< 1
5.a. a.a , .a.a. oyoto	5,5.0/100 L				, ,,	_5.0 05.55.611 05011 05011			, , ,	
Algal Toxins	S									
Manager (A)			NI	-l :- 000 t		45140		40		
Microcystin (Abraxis)	ug/L			d in 2024		1.5 MAC	<1	19	<1	<1
Anatoxin A	ug/L		Last analyz				< 0.01	1	< 0.01	< 0.0
Cylindrospermopsin	ug/L		Last analyz				< 0.01	1	< 0.01	< 0.0
Microcystin-RR	ug/L		Last analyz				< 0.01	1	< 0.01	< 0.0
Microcystin-YR	ug/L		Last analyz				< 0.01	1	< 0.01	< 0.0
Microcystin-LR	ug/L		Last analyz			45100	< 0.02	1	< 0.02	< 0.0
Total Microcystins	ug/L		Last analyz			1.5 MAC	< 0.14	4	< 0.01	0.2
Nodularin	ug/L		Last analyz	zea in 2014			< 0.01	1	< 0.01	< 0.0
Aluminum	ug/L as Al	17.15	4	< 3	72.8	2900 MAC / 100 OG	13.4	41	< 3	267
			4			2900 MAC / 100 OG 6 MAC				
Antimony	ug/L as Sb	< 0.5	4	< 0.5	< 0.5	6 MAC	< 0.5	41	< 0.5	1.8
Antimony Arsenic	ug/L as Sb ug/L as As	< 0.5 0.295	4	< 0.5 0.24	< 0.5 0.37	6 MAC 10 MAC	< 0.5 0.29	41 41	< 0.5 < 0.1	1.8 0.76
Antimony	ug/L as Sb ug/L as As ug/L as Ba	< 0.5	4	< 0.5	< 0.5	6 MAC	< 0.5	41	< 0.5	1.8 0.76 13
Antimony Arsenic Barium	ug/L as Sb ug/L as As	< 0.5 0.295 5.85	4 4 4	< 0.5 0.24 5	< 0.5 0.37 7.6	6 MAC 10 MAC	< 0.5 0.29 6.4	41 41 41	< 0.5 < 0.1 4.1	1.8 0.76 13 < 3
Antimony Arsenic Barium Beryllium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi	< 0.5 0.295 5.85 < 0.1	4 4 4 4	< 0.5 0.24 5 < 0.1	< 0.5 0.37 7.6 < 0.1	6 MAC 10 MAC	< 0.5 0.29 6.4 < 0.1	41 41 41 41	< 0.5 < 0.1 4.1 < 0.1	1.8 0.76 13 < 3
Antimony Arsenic Barium Beryllium Bismuth	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be	< 0.5 0.295 5.85 < 0.1 < 1	4 4 4 4	< 0.5 0.24 5 < 0.1 < 1	< 0.5 0.37 7.6 < 0.1 < 1	6 MAC 10 MAC 100 MAC	< 0.5 0.29 6.4 < 0.1 < 1	41 41 41 41 39	< 0.5 < 0.1 4.1 < 0.1 < 1	1.8 0.76 13 < 3 < 1 412
Antimony Arsenic Barium Beryllium Bismuth Boron	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd	< 0.5 0.295 5.85 < 0.1 < 1 < 50	4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1	< 0.5 0.37 7.6 < 0.1 < 1 < 50	6 MAC 10 MAC 100 MAC 5000 MAC	< 0.5 0.29 6.4 < 0.1 < 1 < 50	41 41 41 41 39 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5	1.8 0.76 13 < 3 < 1 412 < 0.
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B	< 0.5 0.295 5.85 < 0.1 < 1 < 50 < 0.01	4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01	< 0.5 0.37 7.6 < 0.1 < 1 < 50 < 0.01	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC	< 0.5 0.29 6.4 < 0.1 < 1 < 50 < 0.01	41 41 41 41 39 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01	1.8 0.76 13 < 3 < 1 412 < 0.1
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca	< 0.5 0.295 5.85 < 0.1 < 1 < 50 < 0.01 10.25	4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8	< 0.5 0.37 7.6 < 0.1 < 1 < 50 < 0.01 10.9	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required	< 0.5 0.29 6.4 < 0.1 < 1 < 50 < 0.01 9.84	41 41 41 41 39 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34	1.8 0.76 13 < 3 < 1 412 < 0.1
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Cr	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1	4 4 4 4 4 4 4 4	<0.5 0.24 5 <0.1 <1 <50 <0.01 <1 <50 <0.01 9.8 <1	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required	< 0.5 0.29 6.4 < 0.1 < 1 < 50 < 0.01 9.84 < 1	41 41 41 41 39 41 41 41	<0.5 <0.1 4.1 <0.1 <1 <5 <0.01 5.34 <1	1.8 0.76 13 < 3 < 1 412 < 0. 11.6 < 20
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as B ug/L as Cd mg/L as Ca ug/L as Co	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2	4 4 4 4 4 4 4 4 4	<0.5 0.24 5 <0.1 <1 <50 <0.01 9.8 <1 <0.2	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC	< 0.5 0.29 6.4 < 0.1 < 1 < 50 < 0.01 9.84 < 1 < 0.2	41 41 41 41 39 41 41 41 41	<0.5 <0.1 4.1 <0.1 <1 <5 <0.01 5.34 <1 <0.2	1.8 0.76 13 <3 <1 412 <0.1 11.6 <20 32.5
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025	4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5	6 MAC 10 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO	< 0.5 0.29 6.4 < 0.1 < 1 < 50 < 0.01 9.84 < 1 < 0.2 7.11	41 41 41 41 39 41 41 41 41 41	<0.5 <0.1 4.1 <0.1 <1 <5 <0.01 5.34 <1 <0.2 4.21	1.8 0.76 13 <3 <1 412 <0. 11.6 <10 <20 32.6
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fb ug/L as Li	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5	4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138	41 41 41 41 39 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10	1.8 0.76 13 <3 <1 412 <0. 11.6 <20 32.8 389 2.76
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Co ug/L as Co	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.02 9.025 143.5 0.685	4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 6.05 0.45	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5	41 41 41 39 41 41 41 41 41 41 39	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28	1.8 0.76 13 <3 <1 412 <0. 11.6 <10 <20 32.5 389 2.76 <5
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fb ug/L as Li	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2	4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 1000 AO 5 MAC	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1.0.2 7.11 138 <0.5 <2	41 41 41 41 39 41 41 41 41 41 41 41 39 28	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2	1.8 0.76 13 < 3 < 1 412 < 0. 11.6 < 20 32.5 389 2.76 < 5
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Cu	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835	4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 6.02 6.25 0.45 < 2 2.64	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7	41 41 41 41 39 41 41 41 41 41 41 41 39 28	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1	1.8 0.76 13 < 3 < 1 412 < 0. 11.6 < 20 32.5 389 2.76 < 5
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Fb ug/L as Li mg/L as Mg ug/L as Mn	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3	41 41 41 41 39 41 41 41 41 41 41 39 28 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5	1.8 0.76 13
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Mg ug/L as Mo ug/L as Mo ug/L as Mo	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 < 1 0.468	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148	1.8 0.76 13 <3 <11 412 <0. 11.6 <20 32.6 389 2.76 <5 3.14 111 <20 <55 0.75
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Mg ug/L as Mg ug/L as Mo ug/L as Mi mg/L as Ki ug/L as K	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 < 1 0.468 < 0.1	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.1	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1	1.8 0.76 13 < 3 < 1 1412 < 0.0 11.6 < 20 32.6 3.89 2.76 < 5 3.14 1111 < 20 < 5 0.75 < 0.9
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Cu ug/L as Cu ug/L as Cu ug/L as Ch ug/L as Ms ug/L as Ms ug/L as Ms ug/L as Ks ug/L as Ks ug/L as Se mg/L as Si	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1.5525 <0.1 4190	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 0.591 <0.1 4440	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710	1.8 0.76 13 < 3 < 1 11.6 < 10 < 20 32.5 3.14 111 < 20 < 50 0.75 < 0.0 5886
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Bi ug/L as Cd mg/L as Cd mg/L as Ca ug/L as Co ug/L as Mo ug/L as Mo ug/L as Mo ug/L as K	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02	<0.5 0.37 7.6 <0.1 <10.5 0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.01 4440 <0.02	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <50 0.29 84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02	41 41 41 41 39 41 41 41 41 41 39 28 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02	1.8 0.76 13 <3 <1 412 <0.1 11.6 <20 32.6 389 2.76 <53.14 111 <20 <50 0.75 5886 <10
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Cr ug/L as Fe ug/L as Fe ug/L as Mo ug/L as Mi mg/L as Mi mg/L as K ug/L as Se mg/L as Se mg/L as Ag mg/L as Na	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.02 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 6.02 6.25 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19	<0.5 0.37 7.6 <0.1 <10.7 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9 <10.9	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71	1.8 0.76 13 <33 <1 412 <0. 11.6 <10 <20 32.8 389 2.76 <5 3.14 1111 <10 <5 0.75 <0.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Cr ug/L as Cr ug/L as Cr ug/L as Cu ug/L as Cu ug/L as Fe ug/L as Fe ug/L as Mg ug/L as Mn ug/L as Mo ug/L as K ug/L as K ug/L as K ug/L as Se mg/L as K ug/L as Se mg/L as Se mg/L as Se	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.02 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465 72.45	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1	<0.5 0.37 7.6 <0.1 <10.9 <10.0 <10.9 <11 <0.0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.1 4440 <0.002 7.01 82.3	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1	1.8 0.76 13 <3 <1 412 <0. 11.6 <10 <20 32.6 389 2.76 <5 3.14 111 <20 <50. 0.75 <0.9 5880 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Se ug/L as Mg ug/L as Mn ug/L as Mn ug/L as Mi mg/L as K ug/L as Se mg/L as Se mg/L as Si ug/L as Ag ug/L as Si	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465 72.45 3.05	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 60.2 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1 < 3	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.01 4440 <0.02 7.01 82.3 3.3	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69 <3	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3	1.8 0.76 13 < 3 < 1 412 < 0. 11.6 < 22 32.8 3.89 2.76 < 5 3.11 111 < 20 588 < 10 68 68 68 68 68 68 68 68 68 68
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Fe ug/L as Fe ug/L as Mg ug/L as Mn ug/L as Mn ug/L as Ni mg/L as K ug/L as Si	<0.5 0.295 5.85 <0.1 <1 <50 <0.01 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465 72.45 3.05 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1 < 3 < 5	<0.5 0.37 7.6 <0.1 <1 <50 <0.01 10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.1 4440 <0.02 7.01 82.3 3.3 <5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69 <3 <5	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3 < 5	1.8 0.76 13 <3 <1 11.6 <10 <11.6 <20 32.6 389 2.76 <5 3.14 1111 <20 <5 0.75 <0.8 5886 <10 8.18 866 5.7
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Co ug/L as Cu ug/L as Cu ug/L as Ci ug/L as Mi ug/L as Mi ug/L as Mi ug/L as Ni ug/L as Ni ug/L as Si	<0.5 0.295 5.85 <0.1 <1 <50 <0.001 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 <0.5525 <0.1 4190 <0.02 6.465 72.45 3.05 <5 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1 < 3 < 5 < 5	<0.5 0.37 7.6 <0.1 <1 <10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.02 7.01 82.3 3.3 <5 <5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <15 <0.2 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69 <3 <5 <5 <5	41 41 41 41 41 41 41 41 41 41 41 41 41 4	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3 < 5 < 5	1.8 0.76 13 <3 <1 11.6 <10 <20 32.5 38.9 <5 3.14 1111 <20 <50 0.755 <0.05 5886 <11 8.19 86 57 <20 10.5
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Suffur Tin Titanium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Be ug/L as Be ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Ko ug/L as Mo ug/L as Mo ug/L as Mi mg/L as Mi mg/L as K ug/L as Si	<0.5 0.295 5.85 <0.1 <10.5 0.01 10.25 <11 <0.02 143.5 0.685 <2 2.885 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465 72.45 3.05 <5 <0.01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 6.02 62.5 0.45 < 2 2.664 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1 < 3 < 5 < 5 < 0.01	<0.5 0.37 7.6 <0.1 <10.5 0.37 7.6 <0.1 <10.5 0.01 10.9 <1 <0.02 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.1 4440 <0.02 7.01 82.3 3.3 3.3 <5 <5 <0.01	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	<0.5 0.29 6.4 <0.1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3 < 5 < 5 < 0.01	1.8 0.76 13 <33 <1 412 <0. 11.6 <10 <20 32.8 389 2.76 <5 3.14 1111 <10 <20 <50. 0.75 <0.8 588 <10 8.18 86 5.7 <20 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Co ug/L as Cu ug/L as Cu ug/L as Ci ug/L as Mi ug/L as Mi ug/L as Mi ug/L as Ni ug/L as Ni ug/L as Si	<0.5 0.295 5.85 <0.1 <1 <50 <0.001 10.25 <1 <0.2 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 <0.5525 <0.1 4190 <0.02 6.465 72.45 3.05 <5 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1 < 3 < 5 < 5	<0.5 0.37 7.6 <0.1 <1 <10.9 <1 <0.2 11.5 187 1.09 <2 2.99 75.5 <1 <1 0.591 <0.02 7.01 82.3 3.3 <5 <5	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	<0.5 0.29 6.4 <0.1 <1 <15 <0.2 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69 <3 <5 <5 <5	41 41 41 41 41 41 41 41 41 41 41 41 41 4	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3 < 5 < 5	1.8 0.76 13 <3 <1 412 <0.1 11.6 <10 <20 32.5.6 <5 3.14 111 <20 <50 0.75 <0.6 61 8.19 86 5.7 <20 10.5 <0.0
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium Thallium Uranium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Se ug/L as Mg ug/L as Mi mg/L as Mi mg/L as K ug/L as Se mg/L as Si ug/L as Si	<0.5 0.295 5.85 <0.1 <10.25 <11 <0.025 <11 <0.025 <11 <0.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465 72.45 3.05 <5 <0.01 <0.01 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 10 < 50 < 0.01 9.8 < 1 < 0.2 60.02 62.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 68.1 < 3 < 5 < 0.01 < 0.1 < 5	<0.5 0.37 7.6 <0.1 <10.9 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	<0.5 0.29 6.4 <0.1 <1 <1 <50 <0.01 9.84 <1 <0.5 <22 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69 <3 <5 <5 <0.01 <0.1 <5	41 41 41 41 41 41 41 41 41 41 41 41 41 4	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3 < 5 < 0.01 < 0.1 < 5	0.76 13 <3 <1 11.6 <10 <20 32.5 3.14 111 <20 0.75 <0.5 5880 <10 8.19 86 5.7 <20 10.5 <0.0.1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium Thallium	ug/L as Sb ug/L as As ug/L as Ba ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Cu ug/L as Cu ug/L as Fe ug/L as Fe ug/L as Mo ug/L as Mi mg/L as Mi mg/L as K ug/L as Si ug/L as Se mg/L as Sa mg/L as Sa ug/L as Si	<0.5 0.295 5.85 <0.1 <10.5 0.01 10.25 <11 <0.02 9.025 143.5 0.685 <2 2.835 36.9 <1 <1 0.5525 <0.1 4190 <0.02 6.465 72.45 3.05 <5 <0.01 <0.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.5 0.24 5 < 0.1 < 1 < 50 < 0.01 9.8 < 1 < 0.2 6.02 6.02 6.02 6.02 5.5 0.45 < 2 2.64 13.7 < 1 0.468 < 0.1 3700 < 0.02 6.19 68.1 < 3 < 5 < 0.01 < 0.1 < 0.01	<0.5 0.37 7.6 <0.1 <10.9 <10.0 10.9 <1 10.9 <1 10.9 <2 2.99 75.5 <1 <1 0.591 <0.1 4440 <0.02 7.01 82.3 3.3 <5 <0.01 <0.1	6 MAC 10 MAC 100 MAC 100 MAC 5000 MAC 7 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 100 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	<0.5 0.29 6.4 <0.1 <1 <1 <50 <0.01 9.84 <1 <0.2 7.11 138 <0.5 <2 2.7 35.3 <1 <1 0.53 <0.1 3840 <0.02 6.085 69 <3 <5 <0.01 <0.1	41 41 41 41 39 41 41 41 41 41 41 41 41 41 41 41 41 41	< 0.5 < 0.1 4.1 < 0.1 < 1 < 5 < 0.01 5.34 < 1 < 0.2 4.21 < 10 0.28 < 2 1.1 10.5 < 1 0.148 < 0.1 1710 < 0.02 1.71 18.1 < 3 < 5 < 0.01 < 0.1 < 0.1	1.8 0.76 13 <3 <1 412 <0.1 11.6 <10 <20 32.5 32.5 <5 3.14 111 <20 <50 0.75 <0.6 8.19 86 5.7 <20 10.5 <0.0 <0.1

Table 2: 2024 Summary of Treated Water T		2024 ANALYTICAL RESULTS			CANADIAN GUIDELINES	2014 - 2023 ANALYTICAL RESULTS				
Parameter	Units of	Annual	Samples	Rar		<= Less than or equal to		Samples	,	Range
Name	Measure	Median	Analyzed	Minimum	Maximum	E Less than or equal to	Median	Analyzed	Minimum	Maximum
means Not Detected by analytic	al method used			hysical l	Paramot	ere				
				ilysicari	aranic	.015				
Carbon, Total Organic	mg/L as C	2.2	12	1.9	2.8	Guideline Archived	2	102	0.27	5.3
Colour, True	TCU	3	51	< 2	8	≤ 15 AO	< 2	211	8.0	7
Hardness as CaCO ₃	mg/L	38.55	16	35	51.1	No Guideline Required	37.55	118	<1	53.1
pH Turbidity	pH units NTU	7.01 0.15	3 51	6.96	7.07 1.7	7.0-10.5 AO 1.0 MAC	6.8 0.15	39 262	6.2 0.07	7.5 3.6
•		11.5		0.05		1.0 WAC ≤ 15 AO				
Water Temperature	Degress C	11.5	265	2	24.5	≤ 15 AU	11.5	3547	0.5	26.5
			IV	licrobial	Parame	ters				
Indicator Bacte	eria									
Coliform, Total	CFU/100 mL	<1	85	< 1	< 1	0 MAC	< 1	704	<1	4
E. coli	CFU/100 mL	< 1	85	< 1	< 1	0 MAC	< 1	703	<1	< 1
Hetero. Plate Count, 7 day	CFU/1 mL		Not teste	d in 2024			< 10	126	<1	280
Algal Toxin	S									
Microcystin (Abraxis)	ug/L		Not teste	ed in 2024						
Anatoxin A	ug/L	1		zed in 2014			<0.16	1	<0.16	<0.16
Cylindrospermopsin	ug/L			zed in 2014			< 0.16	1	< 0.16	< 0.16
Microcystin-RR	ug/L			zed in 2014			< 0.1	1	< 0.1	< 0.1
Microcystin-YR	ug/L		Last analy	zed in 2014			< 0.16	1	< 0.16	< 0.16
Microcystin-LR	ug/L			zed in 2014			< 0.16	1	< 0.16	< 0.16
Total Microcystins	ug/L			zed in 2015		1.5 MAC	< 0.16	1	< 0.16	< 0.16
Nodularin	ug/L			zed in 2014			< 0.14	4	< 0.14	< 0.16
				Diales	ectants					
Disinfectant	s			וווופוט	ecianis					
Chlorine, Free Residual	mg/L as Cl2	0.7	265	0.2	2.17	No Guideline Required	0.92	3732	0.04	2.5
Chlorine, Total Residual	mg/L as Cl ₂	0.7		d in 2024	2.17	No Guideline Required	1.07	3218	0.04	7
			Die	infection	By-Bro	ducte				
			Dis	intection	Dy-1 10	ducts				
Trihalomethanes	(THMs)									
Dun and dishlars and barra		44	0.4	0.0	45		44	407	0.4	20
Bromodichloromethane	ug/L	11	24	8.9	15		11	137	<0.1	20
Bromoform	ug/L	<1	24	< 1	< 1		< 1	137	< 0.1	< 1
Chloroform	ug/L	50.5	24	38	91 2		55.5	137	6.91	130
Chlorodibromomethane Total Trihalomethanes	ug/L ug/L	1.25 60.5	24 24	< 1 50	110	100 MAC	1.2 68.1	137 137	<0.1 6.91	6.88 150
Total Tiliaionethanes	ug/L	00.5	24	30	110	TOO WAC	00.1	137	0.91	130
Haloacetic Acids HAA5	·		Not tooto	ed in 2023		80 MAC	31.59	20	13	81.5
пааз	ug/L		Not teste	u III 2023		80 MAC	31.59	20	13	01.5
	1			Me	etals	1		1		
Aluminum	ug/L as AI	6.85	16	3.1	11.9	2000 MAC / 100 OC	< 10	119	<3	346
Antimony	ug/L as Al	< 0.5	16	< 0.5	< 0.5	2900 MAC / 100 OG 6 MAC	< 0.5	118	< 0.5	1.33
Antimony		0.5	16	0.13	< 0.5 0.26	10 MAC	< 0.5 0.19	118	< 0.5 <0.1	0.993
Arsenic Barium	ug/L as As ug/L as Ba	5.7	16	5.1	6.8	10 MAC 100 MAC	5.7	118	<0.1 4	0.993
Beryllium	ug/L as Ba ug/L as Be	< 0.1	16	< 0.1	< 0.1	100 IVIAC	< 0.1	118	< 0.1	< 3
Bismuth	ug/L as Be ug/L as Bi	< 1	16	< 0.1	< 0.1		< 1	116	< 0.1	< 1
Boron	ug/L as Bi	< 50	16	< 50	< 50	5000 MAC	< 50	118	< 50	505
Cadmium	ug/L as Cd	< 0.01	16	< 0.01	< 0.01	7 MAC	< 0.01	118	< 0.01	0.1
Calcium	mg/L as Ca	11.2	16	9.74	17.7	No Guideline Required	10.75	118	8.06	19.4
Chromium	ug/L as Cr	<1	16	< 1	< 1	50 MAC	< 1	118	< 1	10
Cobalt	ug/L as Co	< 0.2	16	< 0.2	< 0.2		< 0.2	118	< 0.2	20
Copper	ug/L as Cu	7.44	16	2.41	29.8	2000 MAC / ≤ 1000 AO	9.755	118	0.66	127
Iron	ug/L as Fe	23.5	16	< 5	71	≤ 100 AO	18.4	118	< 5	2650
II OH	ug/L as Pb	0.4	16	< 0.2	1.28	5 MAC	0.29	118	< 0.2	2.9
	ug/L as Li	< 2	16	< 2	< 2	1	< 2	68	< 2	< 5
Lead Lithium		2.61	16	1.33	3.03	No Guideline Required	2.505	118	0.586	3.07
Lead	mg/L as Mg			1.1	22.4	120 MAC / ≤ 20 AO	7.75	118	< 1	73.9
Lead Lithium	mg/L as Mg ug/L as Mn	5.8	16		< 1		< 1	118	< 1	< 1
Lead Lithium Magnesium			16	< 1			< 1	118	< 1	<50
Lead Lithium Magnesium Manganese	ug/L as Mn	5.8		< 1 < 1	< 1		< 1	110		
Lead Lithium Magnesium Manganese Molybdenum	ug/L as Mn ug/L as Mo	5.8 < 1	16		< 1 0.577		0.536	118	< 0.03	0.735
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Mn ug/L as Mo ug/L as Ni	5.8 < 1 < 1 0.5345 < 0.1	16 16 16 16	< 1 0.489 < 0.1	0.577 < 0.1	50 MAC	0.536 < 0.1	118 118	< 0.03 < 0.1	< 0.1
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K	5.8 < 1 < 1 0.5345 < 0.1 4050	16 16 16	< 1 0.489	0.577 < 0.1 4360	50 MAC	0.536 < 0.1 3660	118	< 0.03 < 0.1 2180	< 0.1 6070
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se	5.8 < 1 < 1 0.5345 < 0.1	16 16 16 16	< 1 0.489 < 0.1	0.577 < 0.1	50 MAC No Guideline Required	0.536 < 0.1	118 118	< 0.03 < 0.1	< 0.1
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se mg/L as Si	5.8 < 1 < 1 0.5345 < 0.1 4050	16 16 16 16 16	< 1 0.489 < 0.1 3420	0.577 < 0.1 4360		0.536 < 0.1 3660	118 118 117	< 0.03 < 0.1 2180	< 0.1 6070
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se mg/L as Si ug/L as Ag	5.8 < 1 < 1 0.5345 < 0.1 4050 < 0.02	16 16 16 16 16 16	< 1 0.489 < 0.1 3420 < 0.02	0.577 < 0.1 4360 < 0.02	No Guideline Required	0.536 < 0.1 3660 < 0.02	118 118 117 118	< 0.03 < 0.1 2180 < 0.02	< 0.1 6070 < 0.02
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as Ni mg/L as Se mg/L as Si ug/L as Ag mg/L as Na	5.8 < 1 < 1 0.5345 < 0.1 4050 < 0.02 10.205	16 16 16 16 16 16	<1 0.489 <0.1 3420 <0.02 8.32	0.577 < 0.1 4360 < 0.02 12.5	No Guideline Required ≤ 200 AO	0.536 < 0.1 3660 < 0.02 8.73	118 118 117 118 118	< 0.03 < 0.1 2180 < 0.02 7.13	< 0.1 6070 < 0.02 10.9
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium	ug/L as Mn ug/L as Mo ug/L as No ug/L as Ni mg/L as K ug/L as Se mg/L as Si ug/L as Ag mg/L as Na ug/L as Sr mg/L as Sr	5.8 < 1 < 1 0.5345 < 0.1 4050 < 0.02 10.205 72.65	16 16 16 16 16 16 16 16	<1 0.489 < 0.1 3420 < 0.02 8.32 66.9	0.577 < 0.1 4360 < 0.02 12.5 88.6	No Guideline Required ≤ 200 AO	0.536 < 0.1 3660 < 0.02 8.73 72.8	118 118 117 118 118 118	< 0.03 < 0.1 2180 < 0.02 7.13 58.3	< 0.1 6070 < 0.02 10.9 92.3
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se mg/L as Si ug/L as Ag mg/L as Na ug/L as Sr	5.8 < 1 < 1 0.5345 < 0.1 4050 < 0.02 10.205 72.65 3.05	16 16 16 16 16 16 16 16	<1 0.489 < 0.1 3420 < 0.02 8.32 66.9 < 3	0.577 < 0.1 4360 < 0.02 12.5 88.6 4.2	No Guideline Required ≤ 200 AO	0.536 < 0.1 3660 < 0.02 8.73 72.8 < 3	118 118 117 118 118 118 116	<0.03 <0.1 2180 <0.02 7.13 58.3 <3	< 0.1 6070 < 0.02 10.9 92.3 4.2
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se mg/L as Si ug/L as Ag mg/L as Na ug/L as Sr mg/L as Sr	5.8 <1 <1 <.1 0.5345 <0.1 4050 <0.02 10.205 72.65 3.05 <.5	16 16 16 16 16 16 16 16 16	<1 0.489 < 0.1 3420 < 0.02 8.32 66.9 < 3 < 5	0.577 < 0.1 4360 < 0.02 12.5 88.6 4.2 < 5	No Guideline Required ≤ 200 AO	0.536 < 0.1 3660 < 0.02 8.73 72.8 < 3 < 5	118 118 117 118 118 118 116 118	<0.03 <0.1 2180 <0.02 7.13 58.3 <3 <5	< 0.1 6070 < 0.02 10.9 92.3 4.2 < 20
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin	ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se mg/L as Si ug/L as Ag mg/L as Na ug/L as Sr mg/L as Si ug/L as Sr	5.8 <1 <1.0.5345 <0.1 4050 <0.02 10.205 72.65 3.05 <5	16 16 16 16 16 16 16 16 16 16 16	<1 0.489 < 0.1 3420 < 0.02 8.32 66.9 < 3 < 5 < 5	0.577 < 0.1 4360 < 0.02 12.5 88.6 4.2 < 5 < 5	No Guideline Required ≤ 200 AO	0.536 < 0.1 3660 < 0.02 8.73 72.8 < 3 < 5 < 5	118 118 117 118 118 118 118 116 118	<0.03 <0.1 2180 <0.02 7.13 58.3 <3 <5 <5	< 0.1 6070 < 0.02 10.9 92.3 4.2 < 20 < 10
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Sulfur Tin Titanium Thallium	ug/L as Mn ug/L as Mo ug/L as No ug/L as Si ug/L as Se mg/L as Si ug/L as Ag mg/L as Sr mg/L as Sr mg/L as Si ug/L as Si ug/L as Ti ug/L as Ti	5.8 <1 <1 0.5345 <0.1 4050 <0.02 10.205 72.65 3.05 <5 <0.01	16 16 16 16 16 16 16 16 16 16 16 16	<1 0.489 <0.1 3420 <0.02 8.32 66.9 <3 <5 <5	0.577 < 0.1 4360 < 0.02 12.5 88.6 4.2 < 5 < 0.01	No Guideline Required ≤ 200 AO 7000 MAC	0.536 < 0.1 3660 < 0.02 8.73 72.8 < 3 < 5 < 5 < 0.01	118 118 117 118 118 118 118 116 118 118	<0.03 <0.1 2180 <0.02 7.13 58.3 <3 <5 <0.01	< 0.1 6070 < 0.02 10.9 92.3 4.2 < 20 < 10
Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Siliver Sodium Strontium Sulf ur Tin Titanium Thallium Uranium	ug/L as Mn ug/L as Mo ug/L as No ug/L as Se mg/L as Se mg/L as Si ug/L as Ag mg/L as Na ug/L as Sr mg/L as Si ug/L as Sr ug/L as Si ug/L as Si ug/L as Ti ug/L as U	5.8 <1 <1 <.1.5345 <0.1 4050 <0.02 10.205 72.65 3.05 <.5 <.5 <.0.01 <0.01	16 16 16 16 16 16 16 16 16 16 16	<1 0.489 < 0.1 3420 < 0.02 8.32 66.9 < 3 < 5 < 5 < 0.01	0.577 < 0.1 4360 < 0.02 12.5 88.6 4.2 < 5 < 0.01 < 0.01	No Guideline Required ≤ 200 AO 7000 MAC	0.536 < 0.1 3660 < 0.02 8.73 72.8 < 3 < 5 < 0.01 < 0.01	118 118 117 118 118 118 116 118 118 116 118	<0.03 <0.1 2180 <0.02 7.13 58.3 <3 <5 <0.01 <0.01 <0.01	<0.1 6070 < 0.02 10.9 92.3 4.2 < 20 < 10 < 0.01 < 0.1